Week 2: Parallel Hardware, Shared Memory
Systems and Low-Level Synchronization
Primitives

MPCS 52060: Parallel Programming

University of Chicago



Video 2.1: Parallel Hardware and
Multicore Architecture



Video Outline

1. Different classifications of Parallel Hardware

2. Parallelism of Multicore Architecture
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Parallel Hardware



Flynn's Taxonomy

- Many different ways to classify parallel computers.
- One widely used classification is known as Flynn’s taxonomy:
- Architectures are classified based on two independent
dimensions: Instruction Stream and Data Stream
- Each Dimension has two possible states: Single and Multiple

W
e
55\0\'0“ SISD (SIMD)
o@ Single instruction stream | Single instruction stream
Single data stream Multiple data stream
MISD (MIMD)
Multiple instruction stream | Multiple instruction stream
Single data stream Multiple data stream
o,
foo,

7
Sy 2/64



Single Instruction, Multiple Data (SIMD)

- Single Instruction: All processing units execute the same
instruction at any given clock cycle

- Multiple Data: Each processing unit can operate on a different
data element

- Best suited for specialized problems characterized by a high
degree of regularity, such as graphics/image processing.

- Called data parallelism.
- Synchronous (lockstep) and deterministic execution

- Most modern computers, particularly those with graphics
processor units (GPUs) employ SIMD instructions and execution
units.
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SIMD prev instruct prev instruct prev instruct

load A(1) load A(2) load A(n)

load B(1) load B(2) load B(n)

swyy

8 )=ArB()| [c@=A@B@| |ct=Am Bn

2

g store C(1) store C(2) store C(n)
next instruct next instruct next instruct

MasPar

Thinking Machines CM-2 " Cell Processor (GPU)

Cra Y-MP
4]64



SIMD drawbacks

- All ALUs are required to execute the same instruction, or remain
idle.

- In classic design, they must also operate synchronously.

- Efficient for large data parallel problems, but not other types of
more complex parallel problems.
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Multiple Instruction, Multiple Data (MIMD)

- Multiple Instruction: Every processor may be working with a
different data stream

- Multiple Data: Every processor may be working with a different
data stream

- Sometime called task parallelism.

- Execution can be synchronous or asynchronous, deterministic or
non-deterministic

- Most common type of parallel computer

- Examples: most current supercomputers, networked parallel
computer clusters and "grids”, multi-processor SMP computers,
multi-core PCs.

- Note: many MIMD architectures also include SIMD execution
sub-components
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Multiple Instruction, Multiple Data (MIMD)
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Types of MIMD Systems

- Shared-memory (The focus of this course)
- The cores can share access to the computer's memory.
- Coordinate the cores by having them examine and update shared
memory locations.
- Distributed-memory (The focus of Distributed Systems and HPC
courses)
- Each core has its own, private memory.
- The cores must communicate explicitly by sending messages
across a network.
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Parallelism in Multi-Core
Architectures



Review: Multicore Processors

As stated in last lecture, the design trend for parallel architectures
have moved multi core chips:

- Consists of multiple hardware processors(CPUs), each which
executes a sequential program.

For multicore architectures, the basic unit of time is a cycle:

- The time it takes a processor to fetch and execute a single
instruction
- As technology advances, cycle times change

- 1980: 10 million cycles/sec
-+ 2005: A 3 GHz processor does 3 billion cycles/sec
- Some instructions take one cycle, and some may take hundreds.
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Multi-Core Architecture

Modern hardware architectures have a multi-core architecture, where
both serial and parallel programs have benefited from internal
parallelism, which is parallelism being down at the hardware level:

- Bit level parallelism:

- Word size by the processors increased stepwise from 4 to 32-bit.

- Increasing the word size lead to less processing time to perform
32-bit operations.

- Trend has stopped with the adoption of 64-bit operations, which
gives sufficient accuracy for floating point numbers and covers a
large address space.

- Pipelining parallelism:
- Pipelining at the instruction level is an overlapping of the
execution of multiple instructions.

- Execution of each instruction is partitioned into several steps
which are performed by dedicated hardware units (pipeline states)
one after another.

10/64



Internal Parallelism: Pipelining

Simple example of pipeline stages:
- fetch: Retrieve the next instruction to be executed from memory

- decode: decode the instruction fetched in step (1).
- execute: load the operands specified and execute the instruction

- write back: write the result into the target location.
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Main benefit: Different pipeline stages can operate in parallel, if
there are no control or data dependencies between the instructions
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Internal Parallelism (cont.)

- Multiple functional units parallelism:

- Many processors has multiple, independent functional units like
ALUS (arithmetic logical units), FPUs(floating point unit),
load/store units, or branch units.

- With these units, different independent instructions can be
executed in parallel by different functional units.

- Processors can execute instructions speculatively before branches
or data have been computed.

- Processors that allows this functional unit parallelism are known
as superscalar processors.

All three internal parallelism techniques discussed are handled by
either compilers or interpreters and make sequential and parallel
programs more efficient and have better performance. As stated in
last lecture, we are limited by how much performance we can
achieve with just this internal parallelism.
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2.2: Shared Memory Systems




Video Outline

1. Overview of Shared Memory Systems
2. Programming of Shared Memory Systems

3. Components and variants of Shared Memory Systems
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Computers with Shared Memory Architecture

Computers with physically shared memory are also called shared
memory machines (SMMS). The components of the architecture
consist of the following:

- Number of processors or cores
- A shared physical memory (also known as global memory)

- Interconnection network to connect the processors with the
memory.

- Shared memory can be implemented as a set of memory
modules (e.g., caches, physical memory, etc.)
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Parallel Programming on SMMs

- SMMs use shared variables which can be accessed by all
pProcessors.

- Communication and cooperation between the processors is
organized by writing and reading shared variables that are
stored in global memory.

- Accessing shared variables concurrently by several processors
should be avoided since race conditions:
- A situation in which the program produces unexpected results
- Hard to reproduce and diagnose because they can be appear in
frequently.
- Only present sometimes under heavy load or when using certain
compilers, platforms, architectures
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Race condition

CPU1T
(crawl A-F pages)
routes = [|[Istring{ {“Chicago” , “Los Angles”, “54"},
{“Chicago” , “San Francisco”, 54"}, ..}

allRoutes = append(allRoutes, routes)

CRu2 T //What gets printed each execution of this
(crawl G-L pages) //program could be different?
Shared Variable RuUtESs UUS‘”"Q“ ey, TG, S, L /Morse all GPUS could be overwriting
R Las Vegas”, “San Francisco”, “1257), ..} // routes by other processors!
alRoutes = [string {.. ) I S - fmt.Printin(“%v”, allRoutes)
CPU3 " =
(crawl M-R pages) //
routes = [istring{ {*Orlando” , “Miam”, “1157}, /
{“Rochester” , “San Francisco”, “4257), ..}
allRoutes = routes)
CPU3

(crawl S-Z pages)
routes = [[istring{ {*Sacramento” , “Chicago”, “3157},
{“Seattle”, “San Francisco”, “195"}, ..}

allRoutes = , routes)

Fix: Need synchronization constructs to ensure deterministic results:

- A program is deterministic if it always produce the same output
from a given starting condition or initial state.

Focus of the next few lectures.
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Parallel Programming on SMMs (cont.)

Parallel programs for SMMs are often based on the execution of
threads:

- An instance of a computer program that is being executed.

Where a processor is a hardware device, a thread is a software
construct.

A program can actually have multiple threads associated with it. The
main thread (or “heavy” thread) is known as an operating system
process.

Components of a process:

- The executable machine language program
- A block of memory

- Descriptors of resources the OS has allocated to the process
- Security information

- Information about the state of the process
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Processes and Threads

A process can contain a number of “light-weight” threads that can:

- Allow programmers to decompose the computations of their
application into several parts (known as tasks) that can be
executed in parallel.

- The hope is that when one thread blocks because it is waiting
on a resource, another will have work to do and can run.

- Have their own stack where they can store local variables,
function calls, etc.

- Some languages and operating systems provide the notion of
thread-local storage, where threads can store and retrieve
values independent of other threads.
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Example: A process and two threads

the “master” thread

/ Thread
Process / \
/ Thread
terminating a thread

starting a thread Is called joining
Is called forking
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Example: A process and three threads
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https://www.tutorialspoint.com/operating_system/os_multi_threading.htm

Processes and Processors

Gives the illusion that a single processor system is running multiple
programs simultaneously.

- Each process takes turns running (i.e., time slice).

- A processor can run a process for a while and then set it aside
and run another process (i.e., context switch)

- After its time is up, it waits (i.e., (blocks) until it has a turn again.

Processor may set aside or descheduled a process for a number of
reasons:

- A memory request that will take some time to satisfy

- A process has run long enough (i.e,, reached an end to its time
slice.). Thus, it's time for another process to begin its time slice.

Note: When a process is descheduled, it may resume execution on
another processor.
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Aside: Simultaneous Multithreading (aka HyperThreading)

Most modern multicore architectures have Simultaneous
multithreading(SMT):

- Use several threads and to schedule executable instructions
from different threads in the same cycle if necessary.

- It helps increase the usage of functional units of a processor
more effectively.

- Hardware support for SMT is based on the replication of the chip
area used to store the processor state.

Dual Core Processor without Dual Core Processor with
Hyper-Threading Hyper-Threading enabled

System Bus

*AS = Architectural State 2

Zhttp://vmantra.in/hyper-threading/ 223



Aside: Simultaneous Multithreading (aka HyperThreading)

- The processor appears to the operating system and user
programs as a set of logical processors to which processors or
threads can be assigned for execution.

- Processes or threads can come from a single or several user
programs.

- Number of replications of the processor state determines the
number of logical processors.

- These logical processors are also known as hardware threads
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Interconnect

The interconnect is the medium by which processors communicate

with main memory and other processors (also known as the system
bus).

We will only look at systems where their interconnect is built off
shared-memory architectures:

- Essentially their are two heavily-used shared-memory
interconnect architectures: Symmetric Multiprocessing(SMP) and
Nonuniform memory access(NUMA).
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Symmetric Multiprocessing

- A special variant of a shared memory system.

- All processors can access the shared main memory at the same
speed.

- Controlled by a single operating system instance that treats all
processors equally (no processor is reserved for a specific
purpose).

- SMP systems are tightly coupled multiprocessor systems,

- All processors can execute different programs (and with different
data) in parallel.

- All processors share common resources (e.g., memory, 1/0 device,
interrupt system) all on the same system bus.

25/64



Symmetric Multiprocessing (cont.)

- Processors and memory are linked by a system bus(a broadcast
medium that acts like a tiny Ethernet).

- Processors and memory have bus controllers units in charge of
sending and listening for messages broadcast on the bus
(listening is sometimes called snooping).

- Advantage: Most common interconnect architecture used today
because its easy to build.

- Disadvantage: Not scalable to large number of processors
because the bus becomes overloaded.
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Interconnect cont.

- Interconnect is a finite resource shared among processors

- Performance in SMP systems is limited by memory bus
bandwidth

- Processors can be delayed if others are consuming too much of
the interconnect’s bandwidth

- SMP configurations do not scale well past 64 processors
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Processors and Memory in Shared
Memory Systems




Processors & Memory

On architectural principle drives everything else: processors and
main memory are far apart.

- Takes a long time to read a value from memory

- Takes a long time for a processor to write a value to memory

- Takes a longer time for the processor to verify that the value
written is installed in memory.

- The relative cost of instructions such as memory access changes
slowly when expressed in terms of cycles.

- Analogy: Accessing memory is more like mailing a letter than
making a phone call.

Memory access time has a large influence on program performance.
The objective of architecture trends over the years have been to
reduce memory access latency:

- The total time that elapses until a memory access operation has

been completely terminated.
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Processors & Memory (cont.)

To help alleviate these memory latency issues, memory inside
modern computers is actually a hierarchy of components that store
data:

- Ranges from one or more levels of small, fast caches to
relatively slow main memory.

- Understanding how these levels interact is essential to
understanding the actual performance of many concurrent
algorithms.
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- Large array of words(i.e, memory blocks/locations), indexed by
an address.

- Both words and addresses are typically either 32 or 64 bits.
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Reading from Memory

Processor sends an address to main memory that it wishes to
retrieve data from

»*\address
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Reading from Memory

Processor waits until main memory sends data back to it.
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Reading from Memory

Processor finally receives the data from main memory and can
continue executing.
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Writing to Memory

Processor sends an address and data to write at the address to main
memory.

,”\ address, value ~—.g- '
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Writing to Memory

Processor waits for acknowledgement that main memory wrote the
data
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Writing to Memory

Processor receives the acknowledgement and can continue executing
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1.3: Caches and Programming on
Shared Memory Syesms




Video Outline

1. Finish discussion on memory hierarchy of SMMs
2. Programming of Shared Memory Systems

3. Low-Level synchronization primitives
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On modern architectures, processors can waste hundreds of CPU
cycles waiting to access main memory.

We can alleviate problem by using caches:

- A collection of memory locations that can be accessed in less
time than some other memory locations.

- A cache is typically located on the same chip as the processors

- Cache line: fixed-size block of data that also contains metadata
(e.g, tag, index)

- Cache lines are normally 64 or 128 bytes

Main Cache
Memory Memory
Index Data Index Bg Data

0 xyz 0 2 abc

1 pdg >< 1 0 xyz

2 abc

3 rof
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Principle of locality

Caches are effective because most programs display a high degree of
locality:

- Accessing one location is followed by an access of a nearby
location.
- Types of locality

- Spatial locality — accessing a nearby location.
- Temporal locality — accessing in the near future.
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Cache Levels

Most processors have two levels of caches, called L1, L2, and L3:

- 11 - typically resides on the same chip as the processor and
takes 1-2 cycles to access

- L2 - may reside either on or off-ship, and takes about 10 cycles
to access

- L3 - normally is off chip but is accessible within about 30 cycles
- Note: These times vary from platform to platform.

All these are significantly faster to access then main memory ( 100s
of cycles).
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Levels of Cache

smallest & fastest

T

L2

L3
Q—/ largest & slowest
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Core i7-9xx Cache Hierarchy

Core i7 Multiprocessor

L1 1-Cache
o
@ L2 Cache
<4
Q
]
<
-
[ L2 Cache
8 u
1 Main Memory
o l
o L2 Gache
Q
o
s
©®
[ L2 Cache
Q
(¢]
L1 i-cache and d-cache: 32KB, 8-way, Access: 4 cycles Cache-Line (Block) size: 64 bytes

(All caches)
L2 cache: 256KB, 8-way, Access: 11 cycles

L3 cache: 8MB, 16-way, Access: 30-40 cycles
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Principle of locality

What could the caches levels look like for this program?
package main
import "fmt"
func main() {

var z [1000]int

var sum int

for i := 0; 1 < 1000; i++ {

sum += z[1i]

}
fmt.Printf("%v\n", sum)
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When a processor attempts to read a value from a given memory
address, it first checks the cache(s).

We call it a cache hit if the value for the processor is located in one
of the cache levels.

Yfm
L1

Z sum

L2 y z total

L3 A[] radius r1 center
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Cache miss

Otherwise, a cache miss is when a value is not in the cache and the
process is required to go to main memory.

5
ﬂ'm
L1

main
y sum memory
L2 r1 total
L3 A[] radius center
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When a Cache Becomes Full...

- Caches are expensive to build and therefore significantly smaller
than main memory.

- Need to make room for new entry when the cache is full
- By evicting an existing entry:

- Discarding a entry if it has not been modified

- Writing it back to main memory if it has

Need a replacement policy(determines which cache line to replace
to make room for a new location).

- Usually some kind of least recently used heuristic
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Cache Coherence

- Processor A and Processor B both cache an address x
- Processor A writes to x

- This operation updates the cache

- How does Processor B find out about the update?

- A cache coherence protocols provides a specification on how to
keep caches in sync with each other. Many cache coherence
protocols in the literature.
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MESI

MESI (pronouced “messy”) is one of the most commonly used cache
coherence protocols. Provides four states that a cache line can be in:

- Modified(M) - Modified, A processor has modified cached data,
must write back to memory

- Exclusive(E) - Not modified, Only one processor has a copy of a
main memory data in a cache line.

- Shared(S) - Shared Not modified, a piece of data from main
memory may be in different caches.

- Invalid(l) - Cache line contents not meaningful
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MESI Example

A processor issues load request at address x from main memory.

8 =

memory data
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MESI Example

Main memory responds with the requested data and the processor
places the data in a cache line. The data is to the cache of
the requesting processor.

—§ 3
— >

DY

Got it
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MESI Example

Another processor requests the data from the same address x from
main memory.
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MESI Example

Processors communicate with each other to update their states to
since both contain data from the same memory address.

g%

memory
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MESI Example

A processor modifies the data for that memory address in its cache.
Other processors need to be notified about this update.
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MESI Example

All other processors are given the updated data and the data is
written immediately back to main memory. May not always
immediately write data back to main memory. Depends on the write

scheme for the cache.

memory
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Write-Through Caches

- Immediately broadcast changes
- Good

- Memory, caches always agree
- More read hits, maybe

- Bad

- Bus traffic on all writes
- Most writes to unshared data
- For example, loop indexes ...

- Hardly used in practice due to the bus traffic problem
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Write-Back Caches

- Immediately broadcast changes

- Caches mark data in the cache as dirty. When the cache line is
replaced by a new cache line from memory, the dirty line is
written to memory.

- The dirty data is usually held in a write-buffer that will
eventually write its contents back to main memory periodically.
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MESI - Invalidate

oo@
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Programming on Shared Memory
Systems




Shared Memory Model in Go

In Go, each concurrently executing activity/task is called a goroutine:

- A goroutine is similar to a thread in other languages/operating
systems but it's not actually a thread.
- At program startup, the only goroutine is the one that calls the
main function, which is known as the main goroutine.
New goroutines are created by the go statement:

- Is an ordinary function/method call prefixed by the keyword go.
- Causes the function to be called in a new created goroutine
- It returns immediately

f() // call f(); wait for it to return
go f() // create a new goroutine that falls f(); don't wait
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Goroutines Example: Spinner

func main() {
go spinner(100 * time.Millisecond)
const n = 45
fibN := fib(n) // slow
fmt.Printf("\rFibonacci(%d) = %d\n", n, fibN)

}
func spinner(delay time.Duration) {
for {
for , r := range -\|/  {
fmt.Printf("\r%c", r)
time.Sleep(delay)
}
}
}
func fib(x int) int {
if x <2 {
return x
}
return fib(x-1) + fib(x-2)
}
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Shared-Memory Programming

As we mentioned earlier, mulitprocessor programming is challenging
because modern systems are inherently asynchronous:

- Activities can be halted and delayed without warning by
interrupts, preemption, cache misses, failures or other events.
- Interruptions vary enormously in scale:

- Cache Miss - 10 instructions
- Page Fault - a few million instructions
- OS preemption - hundreds of millions of instructions.

- These situations can lead to race conditions as mentioned
earlier.
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Critical Sections

To ensure determinism and avoid race conditions, you need to
determine critical sections in your code:

- A critical section is a block of code where potentially more than
one thread can execute the code at the same time. This
potentially where shared resources are accessed/modified.

- The execution of code in a critical section should, effectively, be
executed as serial code.

- Eventually, another thread should be able to access this section
once one thread has completed the critical section.
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Low-level Hardware Synchronization Primitives

Many of the low-level synchronization primitives (e.g., locks,
monitors, etc.) are built off of specialized hardware
primitives/instructions (also known as atomic operations):

- On a shared memory system, an operation is consider atomic if
it completes in a single step relative to other threads.

- No other thread can observe the modification to that shared
variable half-way through its operation.

62/64



Overview of Synchronization Primitives

Hardware provides simple low-level atomic operations:

- x86 load and store of words
- Special instructions:
- compare-and-swap (CAS) (AMD, Intel, Sun)
- pair of test-and-set instructions: loaded-linked and
store-conditional (LL/SC) (ARM, IBM PowerPC, etc.)

- Provided in Go: import "sync/atomic"

We use those simple low-level atomic operations to build
higher-level synchronization primitives:

- Lock (Next week)
- Monitor
- Semaphore
- Conditional Variable
- Barrier
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Problems with Atomic Operations

Best practices is to use atomic operations sparingly because:
Problem with atomic operations:

- Most atomic operations are implemented using CAS or (LL/SC),
which take significant more cycles to complete than a simple
load or store instruction.

- Causes a memory fence, which forces the write-back buffer to be
sent to main memory. This process can then stall other
processors from reading/writing to main memory

- Prevents out-of-order execution and various compiler
optimizations.

- Cost to performance varies depending on architectures, program
design, etc.

- Adds more hardware complexity.
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