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1 Probability Background

1.1 Random Variables

A random variable is “described informally as a variable whose values depend
on outcomes of a random phenomenon”1. In this course, we will represent robot
states, measurements, and controls as random variables.

For example X could be a random variable representing the outcome of
drawing a marble out of a bag that contains 3 blue marbles and 2 red marbles.
x then represents a specific outcome (e.g., drawing a blue marble out of the
bag). If X has a discrete number of possible outcomes, we can represent the
probability of a specific marble draw outcome as

p(X = x)

In our specific example of a bag containing 3 blue marbles and 2 red marbles,
p(X = blue marble) = 0.6 and p(X = blue marble) = 0.4. It is also must be
true that the probability of all possible outcomes sum to 1:∑

x

p(X = x) = 1

Random variables we consider in this course (e.g., the location of the robot)
may also change over time. In order to capture the value of a random variable
a specific point in time, we use the notation Xt. If we want to represent the
random variable Xt at t = 1, we would write that as Xt=1 or simply X1.

1.2 Joint Probability Distributions

If we have two random variables, X and Y , we may be interested in their joint
probability distribution p(X = x and Y = y), another way to write that is
p(X = x, Y = y). If X and Y are independent, then it is true that

1https://en.wikipedia.org/wiki/Random_variable
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p(X = x, Y = y) = p(X = x) · p(Y = y)

For example, if X represents the result of flipping a first fair coin and Y
represents the result of flipping a second fair coin, the probability of both coins
getting ‘heads’ is:

p(X = heads, Y = heads) = p(X = heads) · p(Y = heads)

= 0.5 · 0.5
= 0.25

1.3 Conditional Probability

It may be the case that the probability of a particular random variable may
be informed by the outcome of another random variable. For example, the
probability that I am hungry (p(X = hungry)) will likely be conditioned upon
whether or not I’ve already eaten lunch (p(Y = eaten lunch)). The conditional
probability would be represented as

p(hungry | eaten lunch) = p(X = hungry | Y = eaten lunch)

Additionally, the conditional probability can be represented as

p(x|y) =
p(x, y)

p(y)

Following from the definition of conditional probability, the following repre-
sents the theorem of total probability:

p(x) =
∑
y

p(x|y) p(y)

Additionally, Bayes’ theorem relates the conditional probability p(x|y) to
it’s reverse, p(y|x):

p(x|y) =
p(y|x)p(x)

p(y)

2 Robotics Notation for this Course

We will represent the robot’s state with the random variable X. A specific
robot state is represented by x, a specific state at a particular point in time is
represented by xt. Possible robot states may include:

• The robot’s location or pose

• The robot’s linear & angular velocities
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• The robot’s joint angles (think for a robot arm)

We will represent sensor measurements with the random variable Z,
where a specific sensor measurement is represented by z or zt. Robot sensors
may include:

• Laser range finders (LiDAR)

• RGB cameras

• Sonar sensors

• Infared sensors

• Temperature sensors

Finally, we will represent control information with the random variable U ,
where a specific set of robot controls is represented by u or ut. Robot controls
usually involve commands to motors (e.g., controlling joint angle positions for
a robot arm, controlling wheel motor velocities).

It’s helpful to think about robot behavior in the following steps:

1. The robot starts out in state xt

2. The robot receives a measurement from its sensor(s) zt

3. After receiving that sensor measurement, the robot decides to take action
ut

4. After taking action ut, the robot’s state updates to xt+1

3 Belief Distributions

One essential concept in this course is probabilistic belief. Belief in this context
represents the robot’s knowledge of its state. For many reasons, a robot might be
uncertain about its state, e.g., sensors might be noisy, sometimes robot control
actions may not be executed as the robot intends (e.g., Turtlebot3 ’drift’ in
Gazebo).

We will represent belief as a probability distribution across all of the possible
states. We can inform our calculation of belief by considering the robot’s past
measurements (z1:t) and actions (u1:t) from time t1 to t within its environment:

bel(xt) = p(xt|z1:t, u1:t)

For an example, let’s say that a robot lives within the following grid world
with four horizontal grid cells representing the possible states: A, B, C, D:

A B C D
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If the robot has no idea where it is at time t, then the robot’s belief of which
state it is in is evenly distributed across the 4 possible states:

bel(xt = A) = 0.25

bel(xt = B) = 0.25

bel(xt = C) = 0.25

bel(xt = D) = 0.25

Now, let’s say that a robot receives a measurement zt indicating that the
robot is likely at one of the ends of the grid world. The robot may update its
belief so that it looks something like:

bel(xt = A) = 0.40

bel(xt = B) = 0.10

bel(xt = C) = 0.10

bel(xt = D) = 0.40

This indicates that the robot has higher belief that it is in either state A or
D. There is still a small probability that the robot is in state B or C, but that
is less likely given the recent sensor measurement.

The belief can also be updated based on the movement of the robot. Let’s
imagine that the robot were to move 1 grid cell to the right (and let’s assume
that if the robot moved to the right in cell D, it would end up in cell A).
After moving 1 grid cell to the right, the belief would update and might look
something like:

bel(xt+1 = A) = 0.38

bel(xt+1 = B) = 0.38

bel(xt+1 = C) = 0.12

bel(xt+1 = D) = 0.12

We see here that the robot has the highest belief that it is in either state A
or B. Additionally, The probabilities are not the same as they were in the last
step to account for the fact that there is a small chance that the robot didn’t
actually move as it intended to.
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