Modeling Data Introduction to Machine Learning

Task <-> Methodology

- Explain/Describe data
 - Descriptive Statistics. E.g., what percentage of people are late/on time?
- Use observed data to infer information about a population
 - Inferential Statistics. E.g., what's the support for this candidate?
- Draw a causal connection, explain
 - SCMs, quasi-experiments, experiments, human subjects, etc
- Predict characteristics of out-of-sample data
 - Decision Theory, Machine Learning. E.g., prediction, forecasting, classification...

High-Level Intuition

High-Level Intuition

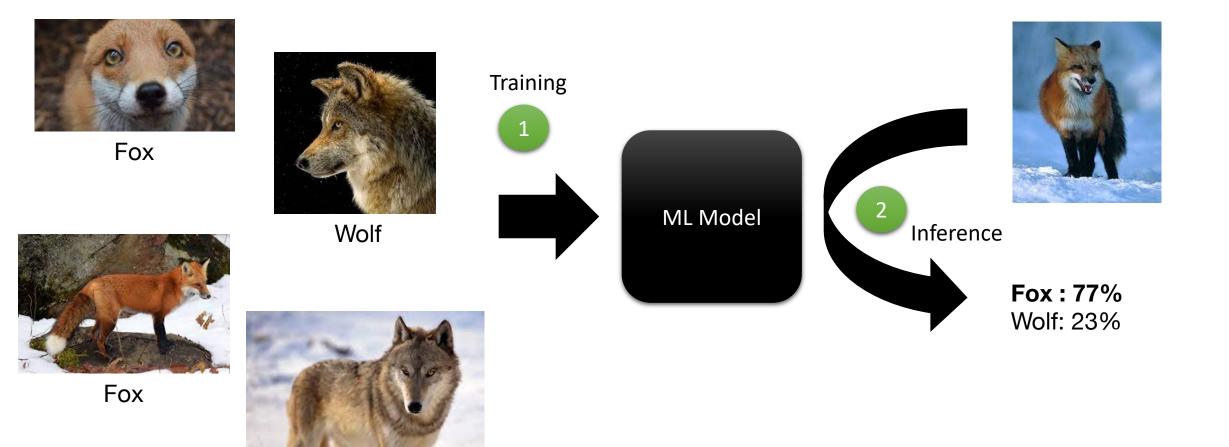
Fox

Fox

Wolf

Wolf

High-Level Intuition



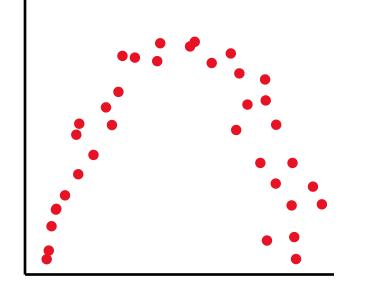
Wolf

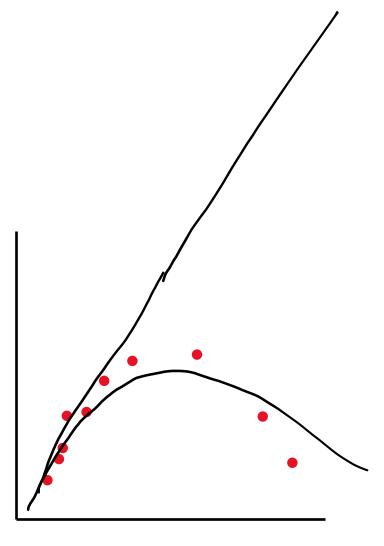
Outline

- Intro to Modeling Data
- ML 101
- Regression. Linear Regression
- Classification

Why we build models...

- To understand data
 - We often wish to understand the data generating process
- To make predictions about *out-of-sample* data





Ground truth

All Models are Wrong

- "All models are wrong, but some are useful"
 - George Box
- "Modelling in science remains, partly at least, an art. Some principles do exist, however, to guide the modeler. The first is that *all models are wrong*; some, though, are better than others and we can search for the better ones. At the same time we must recognize that eternal truth is not within our grasp"
 - McCullagh, P.; Nelder, J. A. (1983), Generalized Linear Models, <u>Chapman & Hall</u>, §1.1.4.

Let's Build a Model To Understand Data

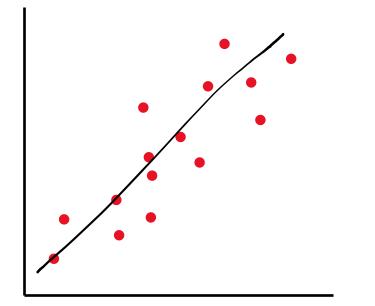
- Running example: a regression problem
- Example:

Name	Age	Department	Gender	Title	Salary	
Jack	55	CS	М	Professor	??	
Jane	27	Stats	F	Assistant Professor	??	
		Υ · · · · ·			Υ	

Given these input vectors...

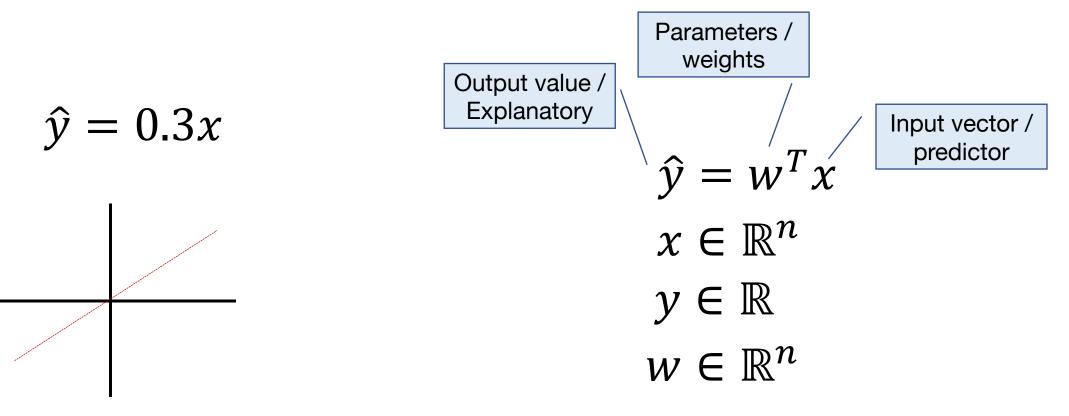
...predict this input variable

Building Intuition: Fitting a Line



Given an input vector x, predict y

• We need to choose a model to do that



Let's Build a Model To Understand Data

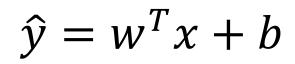
- Running example: a regression problem
- Example:

Name	Age	Department	Gender	Title	Salary
Jack	55	CS	М	Professor	??
Jane	27	Stats	F	Assistant Professor	??
]	
Υ x ₁ , x ₂ , x ₃ , x ₄ , x ₅					\hat{y}

Variables/Attributes/Columns become 'features' of the input vector

Linear Regression Model

• 'Linear' because of the relationship between x and y



Linear Regression Model

- 'Linear' because of the relationship between x and y
- A model is an assumption...
 - ... of what function represents data well

$$\hat{y} = w^T x + b$$

- Once we've fixed a model:
 - We find the parameters/weights w that make the model perform well

Linear Regression Model

- 'Linear' because of the relationship between x and y
- A model is an assumption...
 - ... of what function represents data well

$$\hat{y} = w^T x + b$$

- Once we've fixed a model:
 - We find the parameters/weights w that make the model perform well

We need a method to find those parameters This suggests we need a performance metric

The data we have...

- A dataset becomes a matrix
 - Each row is an input vector

Name	Age	Department	Gender	Title	Salary
Jack	55	CS	М	Professor	33000
Jill	23	Econ	F	Professor	32000
Josh	32	Bio	М	Staff	28000
Jenn	44	Bio	F	Associate Professor	24000
Jane	27	Stats	F	Assistant Professor	25000

Input vectors

- A dataset becomes a matrix
 - Each row is an input vector

Dataset contains the target variable / label

	Name	Age	Department	Gender	Title	Salary	
Training dataset	Jack	55	CS	М	Professor	33000	
	Jill	23	Econ	F	Professor	32000	
	Josh	32	Bio	М	Staff	28000	
Test dataset	Jenn	44	Bio	F	Associate Professor	24000	
	Jane	27	Stats	F	Assistant Professor	25000	

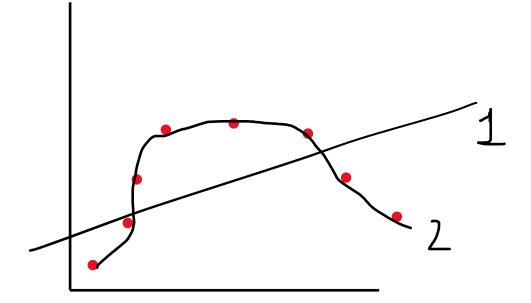
Performance Metric

- Mean Squared Error (MSE)
 - Error decreases to 0 when *predicted y* = *ground-truth y*

$$\begin{split} \text{MSE}_{\text{test}} &= \frac{1}{m} \sum_{i} (\hat{\boldsymbol{y}}^{(\text{test})} - \boldsymbol{y}^{(\text{test})})_{i}^{2}. \\ & \text{m test examples} \end{split}$$

- Goal: We want the model to perform well on the test data which has never seen before
 - Out-of-sample data

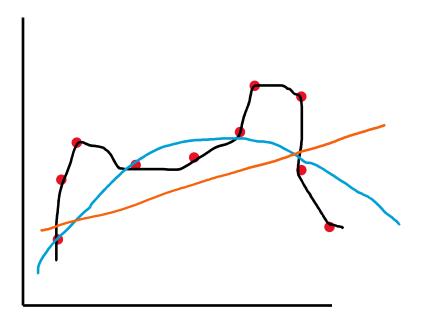
Building some intuition...



- "With four parameters I can fit an elephant, and with five I can make him wiggle his trunk."
 - Von Neumann

Higher Capacity Models

- We can increase the capacity of the model by adding more parameters
 - This will help with obtaining a 'better' fit.



$$\hat{y} = w^T x$$
$$x \in \mathbb{R}^n$$
$$y \in \mathbb{R}$$
$$w \in \mathbb{R}^n$$

We have a goal, let's find w

• We want to find parameters w using the training dataset

We want to achieve a low training error

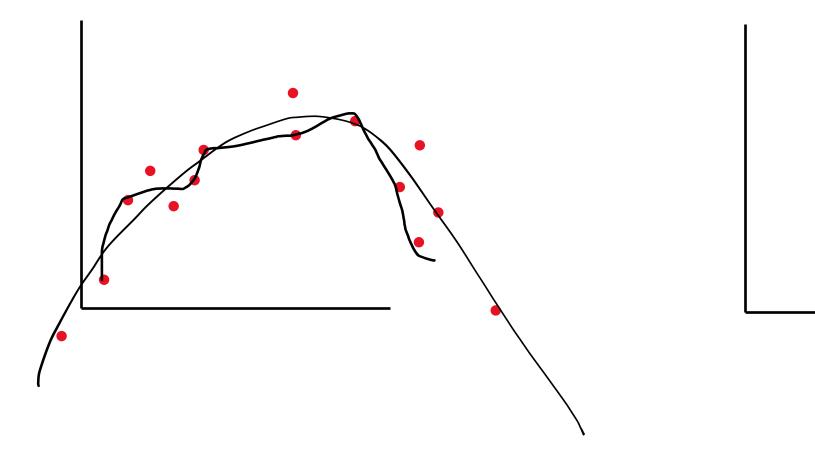
We have a goal, let's find w

• We want to find parameters w using the training dataset

 $\nabla_{\boldsymbol{w}} MSE_{train} = 0$

- This is an optimization problem that we know how to solve well
 We can find the minimum MSE
- Consider we run this optimization with the training data. What will happen when we run on test data?

Building some intuition...



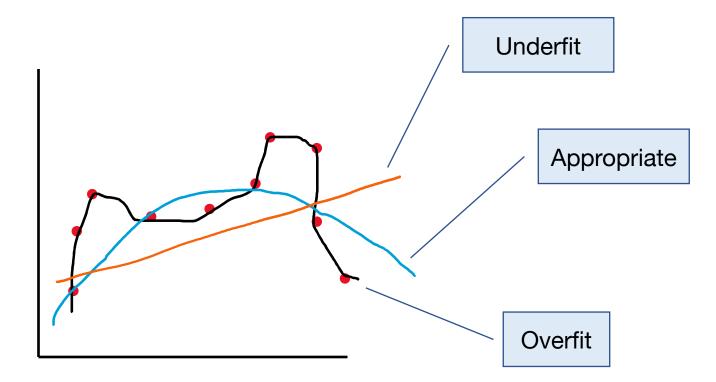
Central challenge of Machine Learning

- Learn parameters so the model performs well on unseen data
 - Generalize to unseen data
- As opposed to the optimization problem of doing well on training data
- Remember why we build models:
 - To understand the process that generated the data
 - To make predictions about out-of-sample data
- Do you think minimizing the MSE on the training data helps us achieve any of those two goals?

Underfitting, Overfitting

- Underfitting
 - When a model cannot reduce the training error
- Overfitting
 - A model achieves low *training error* but high *test error*
- Ideally, we want low training error and small gap between training and test error
 - That's a model that explains the data generating process
 - That's a model that helps us predict out-of-sample data

Underfitting, Overfitting...



Outline

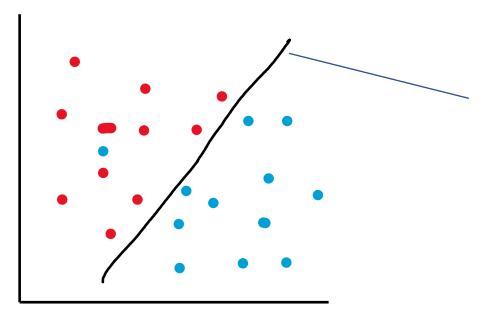
- Intro to Modeling Data
- Walk through Machine Learning
- Regression. Linear Regression
- Classification

Classification Problem

- Given an input vector, x, predict a class, c
 - Binary classification problems
 - Spam vs not spam
 - Give loan vs don't
 - Admit student vs don't
 - Will reoffend vs won't

Binary Classification

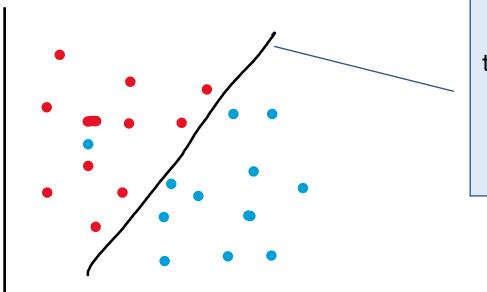
- Given an input vector, x, choose a label 0 or 1
- Intuitively:



Find a hyperplane that separates the space of positive and negative samples

Binary Classification

- Given an input vector, x, choose a label 0 or 1
- Intuitively:



Find a hyperplane that separates the space of positive and negative samples

- How do you evaluate this one?
 - False positives/negatives, accuracy, ...

So, what's machine learning?

- A model
 - Linear regression, logistic regression, ...
- Parameters
- A performance metric
 MSE
- A training objective
 - Loss function
- A strategy to learn/fit the model parameters

Machine learning models

- Regression models
- Decision trees
- Support vector machines
- Deep networks
- Many, many others:
 - PGM, genetic algorithms...

Neural Networks at 10K feet

• Y = f(X)

• F may be constructed by combining different functions

- $h^1 = g^1 (W^1 \mathbf{x} + b^1)$
- $h^2 = g^2 (W^2 h^1 + b^2)$
- ...
- Activation functions
 - Softmax
 - Relu
 - And many many more...
- Optimizers

