
Statistical Database Privacy 
Techniques



Today’s lecture
• To discuss practical definitions of privacy
• To understand what is ‘differential privacy’
• What it is useful for
• When it helps
• When it does not help



Outline
• Building Intuition
• Anonymization
• Encryption

• Differential Privacy
• Local and Decentralized Model
• Composition and Privacy Budget
• What DP is not designed for



Privacy based on Anonymization

• Reidentification
• Latanya Sweeney



Membership Attacks
• GWAS
• Did x participate in a study?

• Shadow training in ML



Data Security is not Privacy
• To keep data private, encrypt 
• But then we preclude usage of that data downstream
• Train a ML model or create any other derived data product
• Encrypting data reduces its usability

• How do we release data without leaking privacy?
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Data Security is not Privacy
• To keep data private, encrypt 
• But then we preclude usage of that data downstream
• Train a ML model or create any other derived data product
• Encrypting data reduces its usability
• Although some techniques are evolving fast, i.e., homomorphic 

encryption, multi-party computation, etc.

• How do we release data without leaking private information?



Goal of Statistical Database Privacy
• Release useful information without leaking private information
• Permit inference about population, but not the disclose of individual 

records
• Quantify and bound amount of information disclosed about an 

individual
• First definition attempt: ‘Ability to perform data analysis over a 

dataset without producing harm to any individual whose record 
is in the dataset’
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Goal of Statistical Database Privacy
• Release useful information without leaking private information
• Permit inference about population, but not the disclose of individual 

records
• Quantify and bound amount of information disclosed about an 

individual
• One definition: ‘Ability to perform data analysis over a dataset

without producing harm to any individual whose record is in the 
dataset’



Smoking before Doll and Hill 1/2
• Imagine an individual, X, who is a smoker
• X participates in a medical study
• Study finds link between smoking -> cancer
• Putting this facts together, one would increase X’s likeliness of 

developing cancer
• This may be harmful for X (think of insurance)

• Link was found using, among others, X’s data
• Is this a privacy violation?

The mortality of doctors in relation to their smoking habits. Doll and Hill. 1954
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Smoking before Doll and Hill 2/2
• In a world without the tobacco study, then X’s privacy is not 

violated
• Consider two parallel worlds. In one, X participates in Doll and 

Hill, in the other X does not participate
• X’s data is part of the dataset in one world but not the other



Statistical Database Privacy
• First attempt: ‘Ability to perform data analysis over a dataset 

without producing harm to any individual whose record is in the 
dataset’

• Definition: Nothing about an individual is learned from a 
dataset, D, that cannot be learned from the same dataset but 
without the individual’s data, D’
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• Local and Decentralized Model
• Composition and Privacy Budget
• What DP is not designed for



Differential Privacy: Intuitive Definition
• It is not possible to tell if the input to an algorithm, A, contained 

an individual’s data or not just by looking at the output of A
• No one can learn much about one individual from the dataset

• Including your data in a dataset does not increase your 
chances of being harmed
• No matter the data
• No matter the algorithm/query



Differential Privacy Definition
• For every pair of input datasets, D1, D2 that differ in one row...
• One row: presence or absence of a single record (individual)

• For every output, O, computed via an algorithm, A…
• Adversary cannot differentiate D1 from D2 based on O

• An algorithm is differentially private if its output is insensitive to 
the presence or absence of a single row. 



EID First Name Last Name Department

43 Jill Smith CS

33 Josh Hartford Econ

53 Jill Corn Bio
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Differential Privacy Definition
• For every pair of input datasets, D1, D2 that differ in one row...
• One row: presence or absence of a single record (individual)

• For every output, O, computed via an algorithm, A…
• Adversary cannot differentiate D1 from D2 based on O
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≤ 𝜀
*The algorithm, A, is often referred to as ‘privacy mechanism’ or simply mechanism



What is Epsilon?
• Epsilon determines how insensitive is the output to the input 

datasets

• Smaller epsilon means higher privacy.
• Consider epsilon = 0
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• Epsilon determines how insensitive is the output to the input 

datasets

• Smaller epsilon means higher privacy.
• Consider epsilon = 0
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DP is a definition
• There are algorithms to produce differentially-private answers
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≤ 𝜀



Algorithms
• Randomized Response
• Laplace Mechanism
• Exponential Mechanism
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Randomized Response
• Are you enjoying 259?
• What does this achieve?
• Privacy is achieved because we cannot know with certainty 

what your answer was.
• With an unbiased coined, at least 25% of answer will be ‘no’

• And yet, we can obtain useful aggregate results
• Because we know how the noise was introduced
• Let’s see how…



Randomized Response
• Flip a coin:
• If tails, then say the truth
• If heads, then flip a coin again:

• If heads, say ‘yes’
• If tails, say ‘no’

• Probability of saying ‘yes’ when the ground truth is ‘yes’
• 2/4 (tails) + ¼ (heads + heads) = 3/4

• Probability of saying ‘yes’ when the ground truth is ‘no’
• ¼ (heads + tails)
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Algorithms
• Randomized Response
• Laplace Mechanism
• Exponential Mechanism



Laplace Mechanism

Query

Result, r Result + noise, r’

Add Noise

Laplace mechanism works for numerical results



How do we add noise?
• We want to add noise so that:

• The noisy answer does not leak private information
• Keep DP definition in mind

• The noisy answer is useful
• Laplace mechanism adds noise by sampling from a Laplace dist.

• Mean, 𝜇 = 0
• Variance = 2 * 𝜆2

• Typically refer to: Lap(𝜆)
• How do we choose 𝜆?
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How do we choose 𝜆?

• 𝜆 = S/𝜀
• S is the Sensitivity: property of the query, computed over 

neighboring datasets, D, D’
• Intuitive definition of Sensitivity: The maximum change 1 row 

can cause to the output
• Selecting 𝜆 as above guarantees 𝜀-DP answer



How do we choose 𝜆?

• 𝜆 = S/𝜀
• S is the Sensitivity: property of the query/algorithm, computed 

over neighboring datasets, D, D’
• Intuitive definition of Sensitivity: The maximum change 1 row 

can cause to the output of the query
• Selecting 𝜆 as above guarantees 𝜀-DP answer



Example: SUM query
• SELECT SUM(salary) FROM employee where dep=CS;
• What’s the maximum change achieved by varying 1 record?

Salary
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• If data is in range [a,b]
• Sensitivity of SUM is b

• What’s the sensitivity of COUNT()?
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• If data is in range [a,b]
• Sensitivity of SUM is b

• What’s the sensitivity of COUNT()?



What’s the Utility of Laplace Mech?
• Utility: how useful is the answer.
• Intuitively, how close is to the real answer
• E(true_answer – noisy_answer)2

• Think of the tradeoff between privacy (epsilon) and utility



Exponential Mechanism
• When the answer of an algorithm is not numerical but 

categorical
• Won’t get in details…
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collector
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RP vs LM
Query

Result, r Result + noise, r’

Add Noise

Query

Noisy
data, d’ Result, r’

Add NoiseData, d

You don’t trust 
data collector



RP vs LM
• Local or Decentralized vs Centralized
• Is data collection differentially private or only the answers?
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Composition
• Build more complicated (and useful) algorithms from primitive 

building blocks
• Composition rules help us reason about privacy budgets

• Serial composition
• If you run n DP-algorithms, serially, the resulting algorithm is 𝜀’-DP
• 𝜀′ = 𝜀1 + 𝜀2 + … + 𝜀n

• Parallel composition
• When running n DP-algorithms on disjoint data, the resulting algorithm is max(𝜀i)

• Postprocessing. F(M()), if M is DP-private, then output of F is too
• A lot of the magic of DP is to design algorithms that don’t consume 

much budget and yet produce good quality results
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Tradeoffs and Caveats of DP
• Utility vs Privacy
• How to choose parameters
• What model, centralized vs local, to choose
• Interactive vs offline release

• Do you produce results once? Or do you let people query the DB?
• What happens if you just let people query the DB?

• Privacy budget
• This can be limited by user. 

• Users can talk to each other, though
• Make sure you understand what DP guarantees



Use Cases



Chrome browser and iPhone usage stat
• Locally private. Chrome and iPhones add noise to records 

before sending them to the companies
• Makes sense because customers may not trust these 

companies
• Companies may need to release subpoenaed datasets
• Snowden and NSA surveillance on Google’s data centers



Chrome vs Apple
• Chrome releases its DP code (RAPPOR)
• Apple doesn’t
• How much can you trust a DP implementation without knowing 

the parameters?
• i.e., epsilon?



Census 2020
• Centralized model. Collect clean data (as usual) but release 

differentially private results only
• CIA, FBI, IRS cannot ask for census data by law



Census 2020
• https://hdsr.mitpress.mit.edu/pub/dgg03vo6/release/2
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What DP is not good for
• Fitness app Strava published 

a heatmap showing the paths 
users log as they run or cycle
• Can you know the identity of 

a single user?
• Does DP help?

• Do you foresee any other 
’privacy’ problems?

From bbc.com
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What DP is not good for
• Fitness app Strava published 

a heatmap showing the paths 
users log as they run or cycle
• Can you know the identity of 

a single user?
• Does DP help?

• Can you identify any other 
’privacy’ problems?

From bbc.ocm

These heatmap shows American 
soldiers running within 
Bagram air base in Afghanistan


