
CLASS
ADAPTER
PATTERN

THE TEXTBOOK
EXAMPLE

WE’RE DONE!

Any Questions?

FINE, FINE, I’LL GIVE YOU A
REAL-WORLD EXAMPLE

The Class Adapter is Baby-Boss-Friendly

HUH?
Have you Ever Dealt With A Boss Who Is:

1)  Difficult
2)  Stubborn
3)  Fickle
4)  Capricious
5)  etc. (You get the idea)

Then Listen Up. The Class Adapter May Save Your
*

* Profanity omitted for obvious reasons

CONSIDER THIS
SCENARIO…

This is you.
You are a software engineer.

You maintain a complex piece
of software built over the years.

Whose Interface
Many Depend On.

You’ve been doing a spectacular job, and everything is
running smoothly!

BUT THEN, ONE
MORNING…

Baby boss shows up to work, half asleep…

“YOU’RE OKAY, BOSS?”

“Kiddo, I had a moment
of genius last night [no

surprise, really], and
spent all night eating
pizza and coding up
new features for our

system”

And, you’re like: “That’s great, boss!”

BUT THEN BABY BOSS
GOES ON TO SAY…

“I NEED YOU TO INTEGRATE THEM”

NO WORRIES, BOSS,
I’VE GOT YOUR BACK

Until you realize that…

BABY BOSS DID NOT FOLLOW
NAMING CONVENTIONS

The Interfaces Are Incompatible!

We will now be
using

“babyCommand()”
to issue commands

But… But… We
agreed to use

“command()”, and
so much depends

on it

YOU TRY TO EXPLAIN

“Boss, so many external systems already call
“command()”. We can’t just call “babyCommand()”

without repercussions!

YOU EVEN TALK TO OTHER
PEOPLE ON THE TEAM

But No One Seems To Care

ALL YOU’RE HEARING IS
BABY BOSS SAYING…

1)  “My methods are brilliantly

named. Don’t touch them!”

2)  “Don’t be such a baby”

3) “Just get it done”

4) “I don’t care what it costs”

(but really, he does)

5) “I’ll be sleeping, but have it on my

desk at 4:34 am tomorrow morning”

If you think this is fictional, think again.
Sadly, it’s all too so very real!

YOU HAVE A CONUNDRUM

How do you reconcile baby boss’s interface
with the main system’s without disturbing

the well-oiled machine?

AND THEN IT DAWNS
UPON YOU

What was that thing
Shacklette was

talking about in class,
for when you have

mismatched
interfaces?

A Class Adapter!
P.S. An object adapter works too – they both really achieve the

same thing, but in different ways. More on that in just a bit.

ARCHITECTURE

NOW SOME CODE…

In C++
(…gasp…)

WAIT

Before you start booing me for picking the
most esoteric language ever created (Sorry, Paul)

LET ME EXPLAIN…

We need C++ for this one.
Recall that C++ (and python) supports multiple inheritance.

Java / Ruby do not.

Multiple
inheritance is a key
feature of the class

adapter pattern

HOW AN ADAPTER
DOES ITS MAGIC

But, I won’t steal my colleague’s thunder.
Stay tuned for the next presentation.

The class adapter “adapts”
interfaces via multiple inheritance

The object adapter “adapts”
interfaces via composition

// The original class that defines “command()”
class Original
{
public:
 Original(){}
 void command()
 {
 std::cout << "Calling the original command" << std::endl;
 }
};

Recall that many
external systems
depend on
“command()”, so
changing the
interface in the
Original class is
risky business

// Baby boss’s desired interface
class BabyBossTargetInterface
{
public:
 virtual void babyCommand() = 0;
};

// Client knows nothing about the original class and “command()”
// yet will be using “command()” via the interface baby boss mandated
int main()
{
 BabyBossTargetInterface * babyBoss = new BabyBossToOriginalAdapter();
 babyBoss -> babyCommand();
}

class BabyBossToOriginalAdapter : public BabyBossTargetInterface, private Original
{
public:
 BabyBossToOriginalAdapter() {}
 virtual void babyCommand()
 {
 std::cout << “From babyCommand()” << std::endl;
 command();
 }
};

// And, finally, the adapter

Notice the target interface is
publically inherited, whereas
Original’s methods are only
visible to the adapter client

The client can call “babyCommand()”, and not “command()”

NOW, FOR REAL, ANY QUESTIONS?

