
Interpreter Pattern

Armon Saied
MPCS 51050
1 May 2018

Gamma: “Given a language, define a representation for its grammar along with
an interpreter that uses the representation to interpret sentences in the
language.”

Rather than building ad hoc algorithms, we use an interpreter to act on frequent
patterns. E.G. Regular expressions

Intent:

An Example: Simple Arithmetic Interpreter
In Java we know these are valid “arithmetic” expressions:

● 1000
● 11 / 90
● a = 1
● (a + b) * (3 - x)

And these are not:

● 10 /
● 19 x

Arithmetic Example Continued...
● Let’s define a rule set...
● Valid expression if it’s:

○ An integer
○ A variable
○ Two expressions separated by an operator
○ An expression in parentheses

● This recursive definition forms basis of the abstract syntax tree (AST) of a
language. NOTE: The AST is an instance of the composite pattern.

Arithmetic Example - UML

Code

Closing thoughts
- It’s recommended to use on simple grammars only, otherwise class hierarchy

too complex.

- Basic idea: “An operation distributed over a class hierarchy based on the
Composite pattern” (Gamma) where the class hierarchy specifies a language.

- When to use: “Use the Interpreter pattern when there is a language to
interpret, and you can represent statements in the language as abstract
syntax trees.”

Questions?

