
Benefits of
Object-Oriented Functionality

" Specify set of methods guaranteed to be
implemented

" Provide method implementations and/or data
that get used by multiple related classes

" Define a group of classes that can be referred to by
the group name

" (all of this within specific limits)

void *

Why did we use them in C?

Why are they dangerous in C?

Tagged unions

Why did we use them in C?

Why are they annoying in C?

Interface

A set of methods only
If a class implements an interface, that is a

guarantee it has all of that specific set of functions.
Allows a single implementation of a sorted structure

(e.g. need to implement a comparison function) to be
used for any object that implements comparable.

Allows a new kind of type checking
The same class can implement many interfaces

public interface Comparable<T>
{

int compareTo(T o);
}

public class BinarySearchTree
{

public void insert(Comparable x);
}

Inheritance

The objectives of this lecture are:

To explore the concept and implications of inheritance
Polymorphism

To define the syntax of inheritance in Java
To understand the class hierarchy of Java
To examine the effect of inheritance on constructors

Terminology

Inheritance is a fundamental Object-Oriented concept

A class can be defined as a "subclass" of another class.
The subclass inherits all data attributes of its superclass
The subclass inherits all methods of its superclass
The subclass inherits all associations of its superclass

The subclass can:
Add new functionality
Use inherited functionality
Override inherited functionality

Person
- name: String
- dob: Date

Employee
- employeeID: int
- salary: int
- startDate: Date

superclass:

subclass:

How is this useful?

Economy of time – When you implement Employee, you already have all
functionality of Person. No need to reimplement
Parameter passing – If you have a function that expects a Person, you
can pass an Employee, and it is still fine.

Fewer special-purpose functions for every type of Person that exists
Container classes (linked lists, binary trees, etc.) can be defined to hold a
Person, and can hold any subclass of Person

Allows limited heterogeneity in container classes
Person
- name: String
- dob: Date

Employee
- employeeID: int
- salary: int
- startDate: Date

superclass:

subclass:

What really happens?

When an object is created using new, the system must
allocate enough memory to hold all its instance variables.

This includes any inherited instance variables

In this example, we can say that an Employee "is a kind of"
Person.

An Employee object inherits all of the attributes, methods and
associations of Person

Person
- name: String
- dob: Date

Employee
- employeeID: int
- salary: int
- startDate: Date

Person
name = "John Smith"
dob = Jan 13, 1954

Employee
name = "Sally Halls"
dob = Mar 15, 1968
employeeID = 37518
salary = 65000
startDate = Dec 15,
2000

is a kind of

Inheritance in Java

Inheritance is declared using the "extends" keyword
If inheritance is not defined, the class extends a class called Object

Person
- name: String
- dob: Date

Employee
- employeeID: int
- salary: int
- startDate: Date

public class Person
{
private String name;
private Date dob;
[...]

public class Employee extends Person
{
private int employeID;
private int salary;
private Date startDate;
[...]

Employee anEmployee = new Employee();

Inheritance Hierarchy

Each Java class has one (and only one) superclass.
C++ allows for multiple inheritance

Inheritance creates a class hierarchy
Classes higher in the hierarchy are more general and more abstract
Classes lower in the hierarchy are more specific and concrete

ClassThere is no limit to the
number of subclasses a class
can have

There is no limit to the depth
of the class tree.

Class Class Class

Class

Class ClassClass

The class called Object

At the very top of the inheritance tree is a class called Object

All Java classes inherit from Object.
All objects have a common ancestor
This is different from C++

The Object class is defined in the java.lang package
Examine it in the Java API Specification

Object

Constructors and Initialization

Classes use constructors to initialize instance variables
When a subclass object is created, its constructor is called.
It is the responsibility of the subclass constructor to invoke the
appropriate superclass constructors so that the instance variables
defined in the superclass are properly initialized

Superclass constructors can be called using the "super"
keyword in a manner similar to "this"

It must be the first line of code in the constructor

If a call to super is not made, the system will automatically
attempt to invoke the no-argument (default) constructor of the
superclass.

Constructors - Example

public class BankAccount
{

private String ownersName;
private int accountNumber;
private float balance;

public BankAccount(int anAccountNumber, String aName)
{

accountNumber = anAccountNumber;
ownersName = aName;

}
[...]

}

public class OverdraftAccount extends BankAccount
{

private float overdraftLimit;

public OverdraftAccount(int anAccountNumber, String aName, float aLimit)
{

super(anAccountNumber, aName);
overdraftLimit = aLimit;

}
}

Method Overriding

Subclasses inherit all methods from their superclass
Sometimes, the implementation of the method in the superclass does
not provide the functionality required by the subclass.
In these cases, the method must be overridden.

To override a method, provide an implementation in the
subclass.

The method in the subclass MUST have the exact same signature as
the method it is overriding.

Method overriding - Example

public class BankAccount
{
private String ownersName;
private int accountNumber;
protected float balance;

public void deposit(float anAmount)
{

if (anAmount>0.0)
balance = balance + anAmount;

}

public void withdraw(float anAmount)
{

if ((anAmount>0.0) && (balance>anAmount))
balance = balance - anAmount;

}

public float getBalance()
{

return balance;
}

}

Method overriding - Example

public class OverdraftAccount extends BankAccount
{
private float limit;

@Override // This provides a compiler check of signature
public void withdraw(float anAmount)
{

if ((anAmount>0.0) && (getBalance()+limit>anAmount))
balance = balance - anAmount;

}

}

Object References and Inheritance

Inheritance defines "a kind of" relationship.
In the previous example, OverdraftAccount "is a kind of" BankAccount

Because of this relationship, programmers can "substitute"
object references.

A superclass reference can refer to an instance of the superclass OR an
instance of ANY class which inherits from the superclass.

BankAccount anAccount = new BankAccount(123456, "Craig");

BankAccount account1 = new OverdraftAccount(3323, "John", 1000.0);

anAccount

account1

BankAccount
name = "Craig"
accountNumber = 123456

OverdraftAccount
name = "John"
accountNumber = 3323
limit = 1000.0

Abstract classes / methods
" Abstract methods specified by super class,

implemented by all subclasses
" If there is at least one abstract method, then no

objects of super class can be created (can still be
specified as input parameter to a method, though)

" All abstract methods = interface
" Mix of abstract, not abstract methods allows

flexibility in providing shared functionality and
specifying required methods subclass must
implement

Polymorphism

In the previous slide, the two variables are defined to have
the same type at compile time: BankAccount

However, the types of objects they are referring to at runtime are
different

What happens when the withdraw method is invoked on each
object?

anAccount refers to an instance of BankAccount. Therefore, the
withdraw method defined in BankAccount is invoked.
account1 refers to an instance of OverdraftAccount. Therefore, the
withdraw method defined in OverdraftAccount is invoked.

Polymorphism is: The method being invoked on an object is
determined AT RUNTIME and is based on the type of the
object receiving the message.

Final Methods and Final Classes

Methods can be qualified with the final modifier
Final methods cannot be overridden.
This can be useful for security purposes.

public final boolean validatePassword(String username, String Password)
{
[...]

Classes can be qualified with the final modifier
The class cannot be extended
This can be used to improve performance. Because there an be no
subclasses, there will be no polymorphic overhead at runtime.

public final class Color
{
[...]

Permissions
Modifier Visibility outside class
private None
no modifier Classes in the package
protected Classes in package & all subclasses
public All classes

Review

What is inheritance? What is a superclass? What is a subclass?
Which class is at the top of the class hierarchy in Java?
What are the constructor issues surrounding inheritance?
What is method overriding? What is polymorphism? How are they
related?
What is a final method? What is a final class?

