Benefits of
Object-Oriented Functionality

- Specity set of methods guaranteed to be
implemented

- Provide method implementations and/or data
that get used by multiple related classes

- Define a group of classes that can be referred to by
the group name

« (all of this within specific limits)

void *

Why did we use them in C?

Why are they dangerous in C?

Tagged unions

Why did we use them in C?

Why are they annoying in C?

Interface

A set of methods only

If a class implements an interface, that is a
guarantee it has all of that specific set of functions.

Allows a single implementation of a sorted structure
(e.g. need to implement a comparison function) to be
used for any object that implements comparable.

Allows a new kind of type checking
The same class can implement many interfaces

public interface Comparable<T> public class BinarySearchTree

d d
int compareTo(T o); public void insert(Comparable x);

h j

Inheritance

The objectives of this lecture are:

» [0 explore the concept and implications of inheritance
s Polymorphism

» [0 define the syntax of inheritance in Java
» 10 understand the class hierarchy of Java
» 10 examine the effect of inheritance on constructors

Terminology

» Inheritance is a fundamental Object-Oriented concept

» A class can be defined as a "subclass" of another class.
« The subclass inherits all data attributes of its superclass
@ The subclass inherits all methods of its superclass
@ The subclass inherits all associations of its superclass

» The subclass can: superclass: | Person
: : - name: String
® Add new functionality _ dob: Date
e Use inherited functionality
@ Override inherited functionality I
subclass: | Employee
- employeelD: int
- salary: int
- startDate: Date

How is this useful?

« Economy of time — When you implement Employee, you already have all
functionality of Person. No need to reimplement

« Parameter passing — If you have a function that expects a Person, you
can pass an Employee, and it is still fine.

« Fewer special-purpose functions for every type of Person that exists

« Container classes (linked lists, binary trees, etc.) can be defined to hold a
Person, and can hold any subclass of Person

« Allows limited heterogeneity in container classes
superclass: Person

- name: String
- dob: Date

|

subclass: | Employee

- employeelD: int
- salary: int

- startDate: Date

What really happens?

« When an object is created using new, the system must

allocate enough memory to hold all its instance variables.
@ This includes any inherited instance variables

« In this example, we can say that an Employee "is a kind of"
Person.

s An Employee object inherits all of the attributes, methods and
associations of Person

Person Person
- name: String name = "John Smith"
- dob: Date dob =Jan 13, 1954
Employee
: : name = "Sally Halls"
Tls a kind of dob = Mar 15, 1968
Employee employeelD = 37518
- employeelD: int salary = 65000
- salary: int startDate = Dec 15,
- startDate: Date 2000

Inheritance in Java

« Inheritance is declared using the "extends" keyword
e If inheritance is not defined, the class extends a class called Object

public class Person

(Person
private String name; :iﬁﬁiﬁbﬁg?ng
private Date dob;
[+..]

public class Employee extends Person T

{ Employee
private int employelD; -GHHﬂOY§CH)ZHH
private int salary; - salary: int
private Date startDate; - startDate: Date

[oe.]

Employee anEmployee = new Employee();

Inheritance Hierarchy

« Each Java class has one (and only one) superclass.

s C++ allows for multiple inheritance

» Inheritance creates a class hierarchy

e Classes higher in the hierarchy are more general and more abstract
s Classes lower in the hierarchy are more specific and concrete

« Thereis no limit to the
number of subclasses a class
can have

» There is no limit to the depth
of the class tree.

‘ Class

ad

*

M

Class

Class

Class

/

Class

|

Class

gl

Class

Class

The class called Object

« At the very top of the inheritance tree is a class called Object

« All Java classes inherit from Object.
s All objects have a common ancestor
e This is different from C++

« The Object class is defined in the java.lang package
s Examine it in the Java API Specification

Object

Constructors and Initialization

« Classes use constructors to initialize instance variables
® When a subclass object is created, its constructor is called.

e |t is the responsibility of the subclass constructor to invoke the
appropriate superclass constructors so that the instance variables

defined in the superclass are properly initialized

» Superclass constructors can be called using the "super"
keyword in a manner similar to "this"

« It must be the first line of code in the constructor

« If a call to super is not made, the system will automatically
attempt to invoke the no-argument (default) constructor of the
superclass.

Constructors - Example

public class BankAccount

{
private String ownersName;
private int accountNumber;
private float balance;

public BankAccount (int anAccountNumber, String aName)
{

accountNumber = anAccountNumber;

ownersName = aName;

public class OverdraftAccount extends BankAccount
{

private float overdraftLimit;

public OverdraftAccount(int anAccountNumber, String aName, float aLimit)
{

super (anAccountNumber, aName);

overdraftLimit = aLimit;

Method Overriding

« Subclasses inherit all methods from their superclass

s Sometimes, the implementation of the method in the superclass does
not provide the functionality required by the subclass.

® |In these cases, the method must be overridden.

» [0 override a method, provide an implementation in the
subclass.

s The method in the subclass MUST have the exact same signature as
the method it is overriding.

Method overriding - Example

public class BankAccount

{

private String ownersName;
private int accountNumber;
protected float balance;

public void deposit(float anAmount)

{
if (anAmount>0.0)

balance = balance + anAmount;

public void withdraw(float anAmount)

{
if ((anAmount>0.0) && (balance>anAmount))
balance = balance - anAmount;

public float getBalance()
{

return balance;

Method overriding - Example

public class OverdraftAccount extends BankAccount

{

private float limit;

@Override // This provides a compiler check of signature
public void withdraw(float anAmount)
{
if ((anAmount>0.0) && (getBalance()+limit>anAmount))
balance = balance - anAmount;

—

Object References and Inheritance

» Inheritance defines "a kind of" relationship.
® In the previous example, OverdraftAccount "is a kind of"' BankAccount

» Because of this relationship, programmers can "substitute"
object references.

@ A superclass reference can refer to an instance of the superclass OR an
instance of ANY class which inherits from the superclass.

BankAccount anAccount = new BankAccount (123456, "Craig");

BankAccount accountl = new OverdraftAccount (3323, "John", 1000.0);

BankAccount
name = "Craig"
accountNumber = 123456

anAccount

OverdraftAccount
name = "John"
accountNumber = 3323

accountl limit = 1000.0

Abstract classes / methods

 Abstract methods specified by super class,
implemented by all subclasses

. If there 1s at least one abstract method, then no
objects of super class can be created (can still be
specified as input parameter to a method, though)

. All abstract methods = interface

. Mix of abstract, not abstract methods allows
flexibility in providing shared functionality and
specitying required methods subclass must
implement

Polymorphism

» In the previous slide, the two variables are defined to have

the same type at compile time: BankAccount

s However, the types of objects they are referring to at runtime are
different

« What happens when the withdraw method is invoked on each
object?
e anAccount refers to an instance of BankAccount. Therefore, the
withdraw method defined in BankAccount is invoked.

® accountl refers to an instance of OverdraftAccount. Therefore, the
withdraw method defined in OverdraftAccount is invoked.

» Polymorphism is: The method being invoked on an object is
determined AT RUNTIME and is based on the type of the
object receiving the message.

Final Methods and Final Classes

« Methods can be qualified with the final modifier
e Final methods cannot be overridden.
@ This can be useful for security purposes.

public final boolean validatePassword(String username, String Password)

{
[oe.]

» Classes can be qualified with the final modifier
@ The class cannot be extended

@ This can be used to improve performance. Because there an be no
subclasses, there will be no polymorphic overhead at runtime.

public final class Color

{
[oe.]

Permissions

pr ivate None

no modifier (lasses in the package

protected Classes in package & all subclasses
public All classes
""""""""""""" padagemytools.text
public class TextArea public class TextEditor

private char [] text;

int linecount; // default <
// visibility

visible

protected void formatText(); e

class Book

[
[
[
[
[
[
! visible
[
[
[
[
[
[

visible public void getTex’c();< visible

public void setText();

visible visible
! |
class MyTextDisplay
extends TextArea

vy

Review

« What is inheritance? What is a superclass? What is a subclass?
« Which class is at the top of the class hierarchy in Java?
« What are the constructor issues surrounding inheritance?

» What is method overriding? What is polymorphism? How are they
related?

« What is a final method? What is a final class?

