
David Cash and Blase Ur

Introduction to Software
Vulnerabilities: Buffer Overflows

CMSC 23200/33250, Winter 2021, Lecture 4

University of Chicago

Outline for Lecture 4

1. Overview of software exploits

2. Memory layout and function calls in a process

3. Stack-based buffer overflow attacks

Outline for Lecture 4

1. Overview of software exploits

2. Memory layout and function calls in a process

3. Stack-based buffer overflow attacks

Software Attacks: Context

httpd  
process

passwd
process

Outsider corrupting process

Insider escalating privilege

• Usually want to monetize system

• Sometimes targeted espionage

• Happy crashing system as well!

Software Vulnerabilities are Very Common

• According to vulnerability researcher and author Dave Aitel:

In one hour of analysis of a binary, one can find potential vulnerabilities

In one week of analysis of a binary, one can find at least one good vulnerability

In one month of analysis of a binary, one can find a vulnerability that no one else will
ever find.

Two Basic Principles of Most Attacks

• Adversaries get to inject their bytes into your machine

• “Data” and “Code” are interchangeable; They are fundamentally the same “thing”.

httpd  
process

GET /index.htmlh6\گ??`:??
L??S)???Z?vm??q`?%?~???M?

EK???’?_?|Cg7L??s3?

GET /index.html HTTP/1.1

vs.

Some Classes of Software Vulnerabilities

• Memory management

• Integer overflow and casting

• Unsanitized input fed to unprotected functions (e.g. printf)

• …

Outline for Lecture 4

1. Overview of software exploits

2. Memory layout and function calls in a process

3. Stack-based buffer overflow attacks

Memory Layout of a Process (in Linux)
Virtual Memory

fff…f

000…0

.text

.data

.bss

stack

heap

.text: Machine executable code

.data: Global initialized static variables

.bss: Global uninitialized variables (“block starting symbol”)
heap: Dynamically allocated memory (via brk/sbrk/mmap syscall)
stack: Local variables and functional call info
env: Environment variables (PATH etc)

env

(Demo!)

x86 Registers and Virtual Memory Layout
Virtual Memory

fff…f

000…0

.text

.data

.bss

stack

heap

env

CPU

…

Registers

eax ebx ebpcpl esp eip

esp: stack pointer (top of stack)
ebp: base pointer to current “stack frame”
eip: instruction pointer

The Stack and Calling a Function in C
Virtual Memory

fff…f

000…0

stack

env

What happens to memory when you call foo(a,b)?
- A “stack frame” is added (esp moves up)
- Instruction pointer eip moves to code for foo

prev frame

int foo(int a, int b) {
 int d = 1;
 return a+b+d;
}

prev arg

saved eip

saved ebp

prev local

arg a

arg b

saved eip

saved ebp

local d

new frame
}
}

esp

main

foo

eip

ebp

Returning from a function
Virtual Memory

fff…f

000…0

stack

env

What happens after code of foo(a,b) is finished?
- Pop frame off of stack (move esp down)
- Move saved ebp to ebp register
- Move saved eip to eip register

prev frame
arg a

arg b

saved eip

saved ebp

int foo(int a, int b) {
 int d = 1;
 return a+b+d;
} local d

prev arg

saved eip

saved ebp

prev local

new frame
}
}

main

foo

esp

eip

ebp

Outline for Lecture 4

1. Overview of software exploits

2. Memory layout and function calls in a process

3. Stack-based buffer overflow attacks

Typical Problem: Overflowing a buffer on the stack
Function bad copies a string into a 64 character buffer.
— strcpy continues copying until it hits NULL character!
— If s points to longer string, this overwrites rest of stack frame.
— Most importantly saved eip is changed, altering control flow.

void bad(char *s) {
 char buf[64];
 strcpy(buf, s);
}

local buf
<buf cont.>

<buf cont.>

…

<buf cont.>

arg s

saved eip

saved ebp

Frame before strcpy

AAAA

AAAA

AAAA
AAAA

AAAA

AAAA

AAAA

AAAA

Frame after strcpy

saved eip should be here!
AAAA=0x41414141 will be used

as return address

SEGFAULT!

s=“AAAA…AAAA” (70 or more characters)

What will happen?

How to exploit a stack buffer overflow
Suppose attacker can cause bad to run with an s it chooses.
- Step 1: Set correct bytes to point back to input(!) void bad(char *s) {

 char buf[64];
 strcpy(buf, s);
}

local buf
<buf cont.>

<buf cont.>

…

<buf cont.>

arg s

saved eip

saved ebp

Frame before strcpy

AAAA

AAAA

AAAA
AAAA

AAAA

AAAA

0xbffff624

AAAA

Frame after strcpy

Well-chosen (unprintable)
characters used

as an address for eip!

What will happen?

s=“AAAAA…AAAA\x24\xf6\xff\xbfAAA…”

0xbffff624

Illegal instruction!

How to exploit a stack buffer overflow
Suppose attacker can cause bad to run with an s it chooses.
- Trick 1: Set correct bytes to point back to input(!)
- Trick 2: Make input executable machine code(!)

void bad(char *s) {
 char buf[64];
 strcpy(buf, s);
}

local buf
<buf cont.>

<buf cont.>

…

<buf cont.>

arg s

saved eip

saved ebp

Frame before strcpy

<code>

<code>

<code>
<code>

<code>

AAAA

0xbffff624

<code>

Frame after strcpy

saved eip

What will happen?

s=“<machine code>\x24\xf6\xff\xbfAAA…”

0xbffff624

What to put in for <code>?
The possibilities are endless!
— Spawn a shell
— Spawn a new service listening to network
— Overview files
— …

But wait… what about NULL bytes?
Solution: Find machine instructions with no NULLs!
— Can even find machine code with all alpha bytes.

<code>

<code>

…00
<unchanged>

<unchanged>

AAAA

saved eip

saved ebp

Frame after strcpy

s=“<machine code>\x24\xf6\xff\xbfAAA…”

strcpy
stopped here,
saving victim :(

Example Shellcode

char shellcode[] =
“\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b"
“\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd"
"\x80\xe8\xdc\xff\xff\xff/bin/sh";

#include <stdio.h>
void main() {
 char *name[2];
 name[0] = “/bin/sh";
 name[1] = NULL;
 execve(name[0], name, NULL);
}

Basically equivalent to:

Finally, where did that magic address come from?
Two issues:
— Need to place address in correct spot
— Need address to jump to beginning of shellcode

<code>

<code>

<code>
<code>

<code>

AAAA

0xbffff624

<code>
saved eip

0xbffff624

Technique #1: NOP Sleds
— Instruction 0x90 is “xchg eax, eax”, i.e. does not thing. This is a “No Op” or “NOP”.
— Just add a ton of NOPs (as many as you can, even many MB) and hope pointer lands there

<code>

<code>

<code>
<code>

<code>

AAAA

0xbffff624

<code>
saved eip

0xbffff624

0x90909090

…

0x90909090

0x90909090

Technique #2: Placing malicious EIP
— Simple: Just copy it many times

<code>

<code>

<code>
<code>

<code>

0xbffff624

<code>

0x90909090

…

0x90909090

0x90909090

0xbffff624

…

0xbffff624

saved eip

0xbffff624

The End

