Cryptography Part 2 CMSC 23200/33250, Winter 2021, Lecture 8

David Cash & Blase Ur

University of Chicago

Outline

- Message Authentication
- Hash Functions
- Public-Key Encryption
- Digital Signatures

Outline

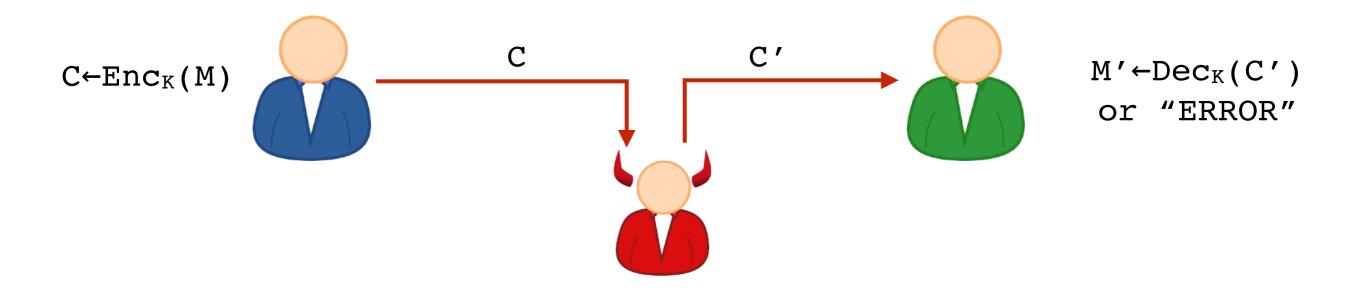
- Message Authentication

- Hash Functions
- Public-Key Encryption
- Digital Signatures

Next Up: Integrity and Authentication

- Authenticity: Guarantee that adversary cannot change or insert ciphertexts
- Achieved with MAC = "Message Authentication Code"

Encryption Integrity: An abstract setting



Encryption satisfies **integrity** if it is infeasible for an adversary to send a new C' such that $Dec_{\kappa}(C') \neq ERROR$.

AES-CTR does not satisfy integrity

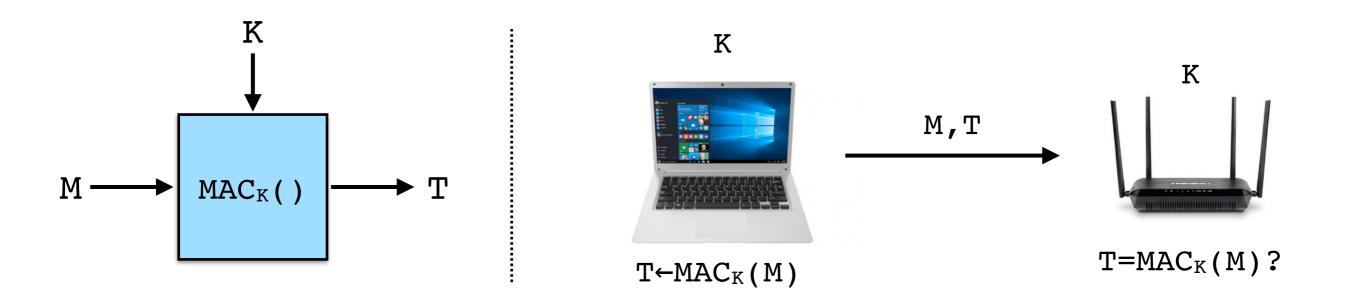
- M = please pay ben 20 bucks
- C = b0595fafd05df4a7d8a04ced2d1ec800d2daed851ff509b3e446a782871c2d

- C'= b0595fafd05df4a7d8a04ced2d1ec800d2daed851ff509b3e546a782871c2d
- M' = please pay ben 21 bucks

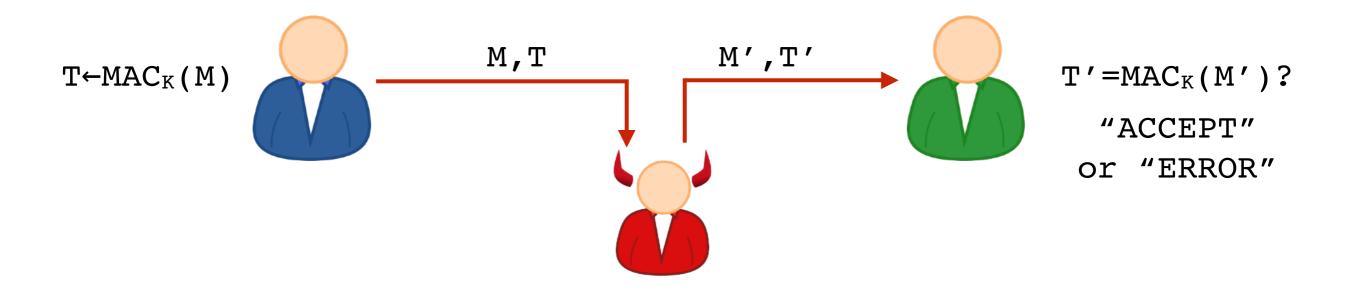
Inherent to stream-cipher approach to encryption.

Message Authentication Code

A message authentication code (MAC) is an algorithm that takes as input a key and a message, and outputs an "unpredictable" **tag.**



MAC Security Goal: Unforgeability



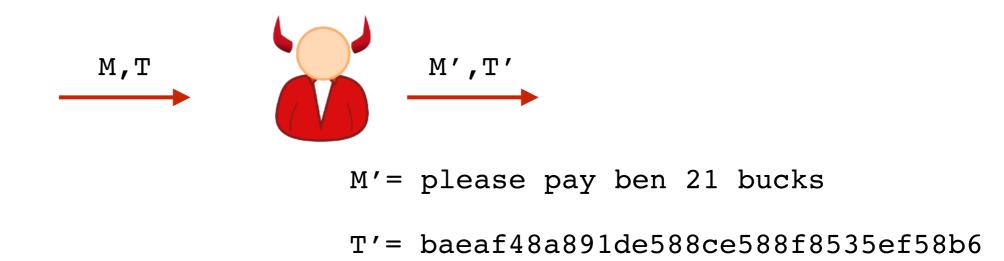
MAC satisfies **unforgeability** if it is unfeasible for Adversary to fool Bob into accepting M' not previously sent by Alice.

MAC Security Goal: Unforgeability

Note: No encryption on this slide.

M = please pay ben 20 bucks

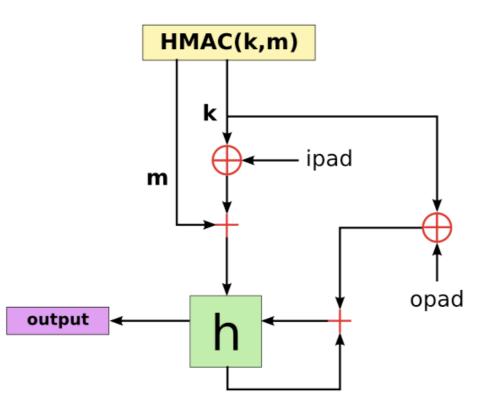
T = 827851dc9cf0f92ddcdc552572ffd8bc



```
Should be hard to predict T' for any new M'.
```

MACs In Practice: Use HMAC or Poly1305-AES

- Don't worry about how it works.
- More precisely: Use HMAC-SHA2. More on hashes and MACs later.

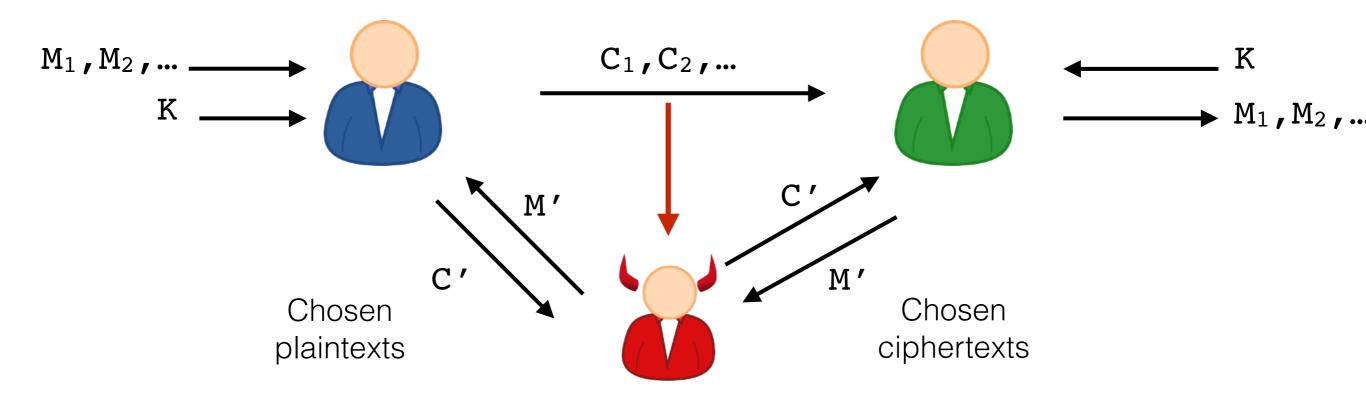


- Other, less-good option: AES-CBC-MAC (bug-prone)

Encryption that provides **confidentiality** and **integrity** is called **Authenticated Encryption**.

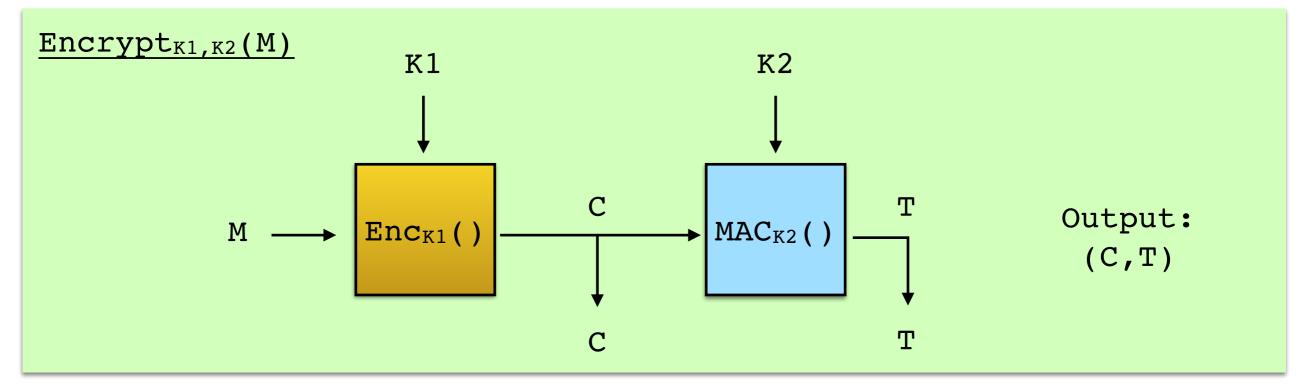
- Built using a good cipher and a MAC.
 - Ex: AES-CTR with HMAC-SHA2
- Best solution: Use ready-made Authenticated Encryption
 - Ex: AES-GCM is the standard

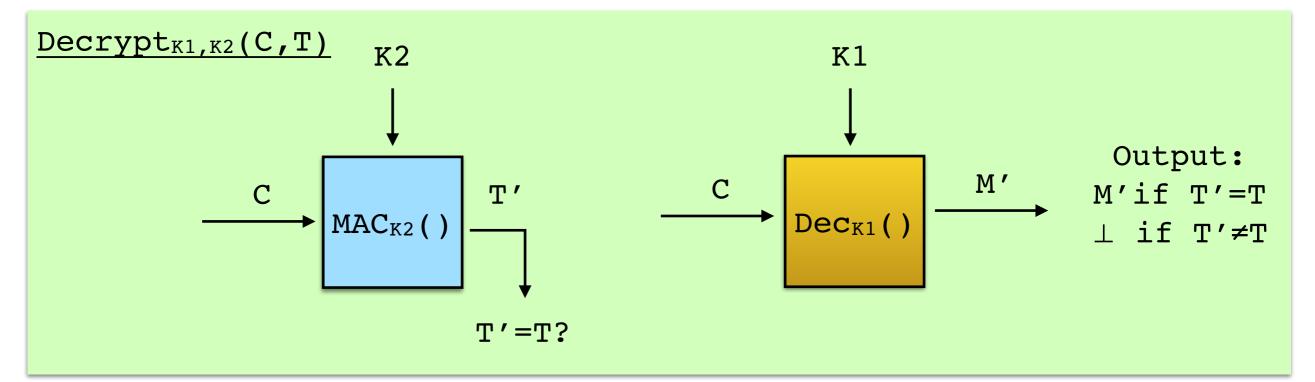
Breaking Encryption: Game with Active Adversaries



Authenticated Encryption Security: Adversary cannot recover any useful information about plaintexts that it didn't form itself OR fool party into accepting some C' that wasn't sent.

Building Authenticated Encryption





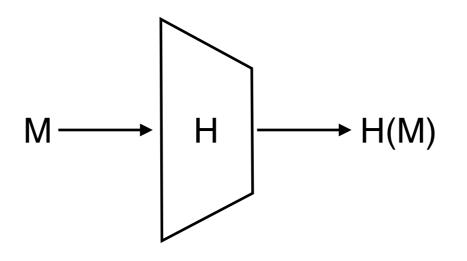
- Summary: MAC the ciphertext, not the message

Outline

- Message Authentication
- Hash Functions
- Public-Key Encryption
- Digital Signatures

Next Up: Hash Functions

Definition: A <u>hash function</u> is a deterministic function H that reduces arbitrary strings to fixed-length outputs.

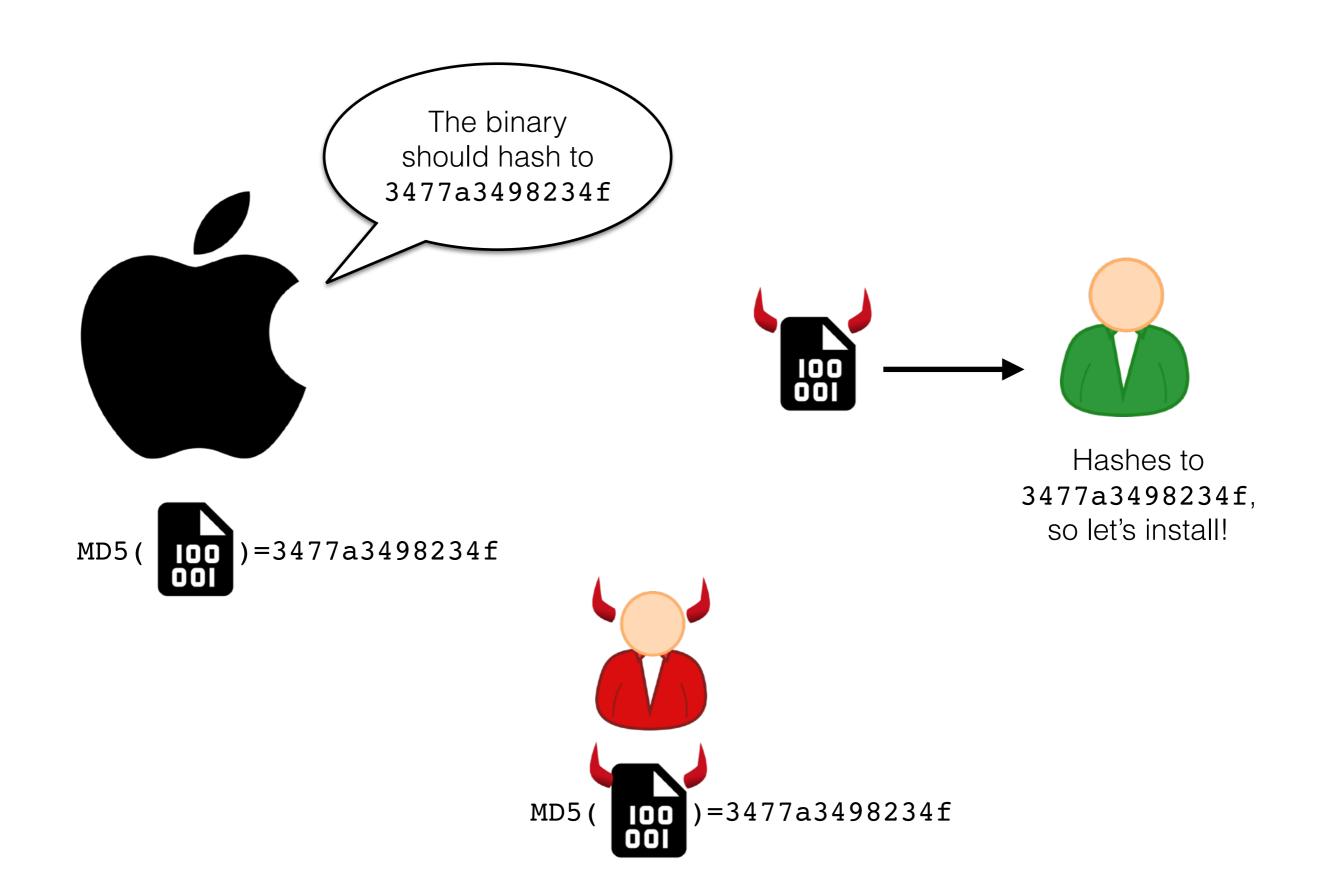


Some security goals:

- collision resistance: can't find M = M' such that H(M) = H(M')
- preimage resistance: given H(M), can't find M
- second-preimage resistance: given H(M), can't find M' s.t. H(M') = H(M)

Note: Very different from hashes used in data structures!

Why are collisions bad?

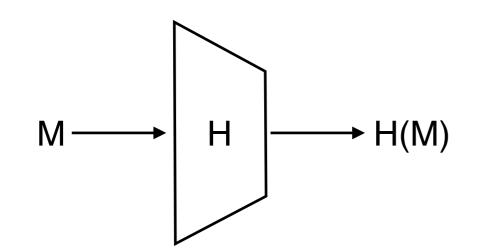


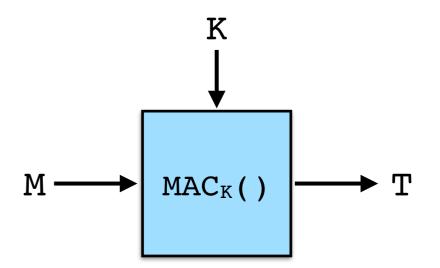
Practical Hash Functions

Name	Year	Output Len (bits)	Broken?
MD5	1993	128	Super-duper broken
SHA-1	1994	160	Yes
SHA-2 (SHA-256)	1999	256	No
SHA-2 (SHA-512)	2009	512	No
SHA-3	2019	>=224	No

Confusion over "SHA" names leads to vulnerabilities.

Hash Functions are not MACs

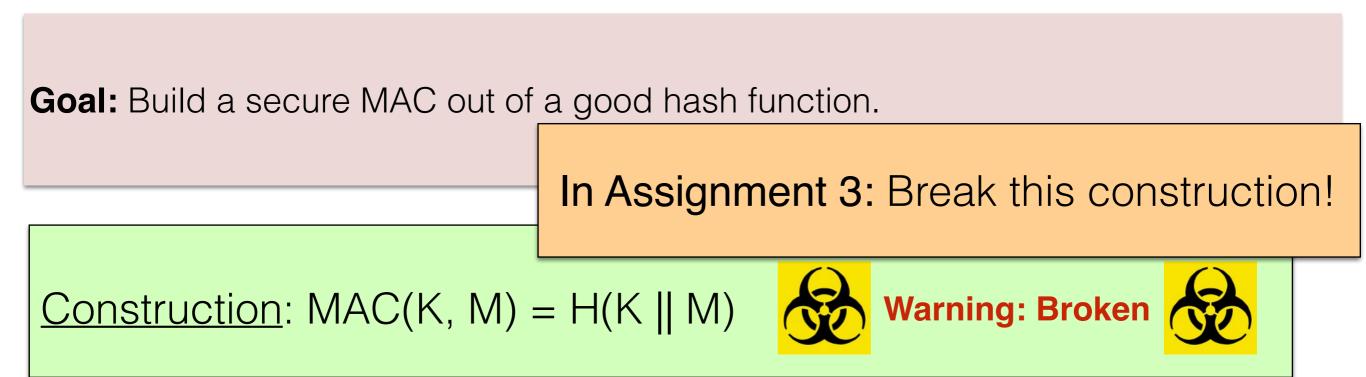




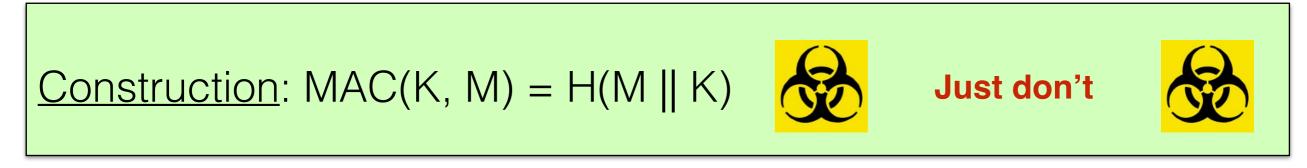
Both map long inputs to short outputs... But a hash function does not take a key.

Intuition: a MAC is like a hash function, that only the holders of key can evaluate.

MACs from Hash Functions



- Totally insecure if H = MD5, SHA1, SHA-256, SHA-512
- Is secure with SHA-3 (but don't do it)



Upshot: Use HMAC; It's designed to avoid this and other issues.

Later: Hash functions and certificates

Outline

- Message Authentication
- Hash Functions
- Public-Key Encryption
- Digital Signatures

Basic question: If two people are talking in the presence of an eavesdropper, and they don't have pre-shared a key, is there any way they can send private messages?

Basic question: If two people are talking in the presence of an eavesdropper, and they don't have pre-shared a key, is there any way they can send private messages?

Diffie and Hellman in 1976: **Yes!**

Turing Award, 2015, + *Million Dollars*

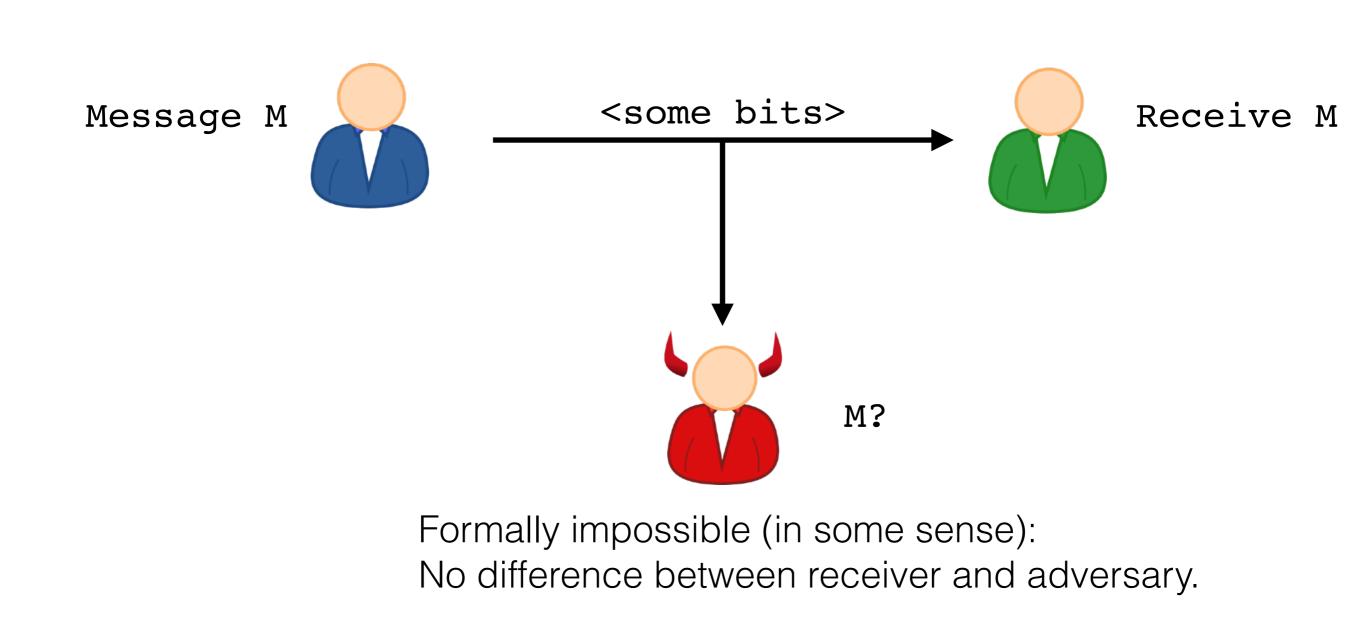


Rivest, Shamir, Adleman in 1978: **Yes, differently!**

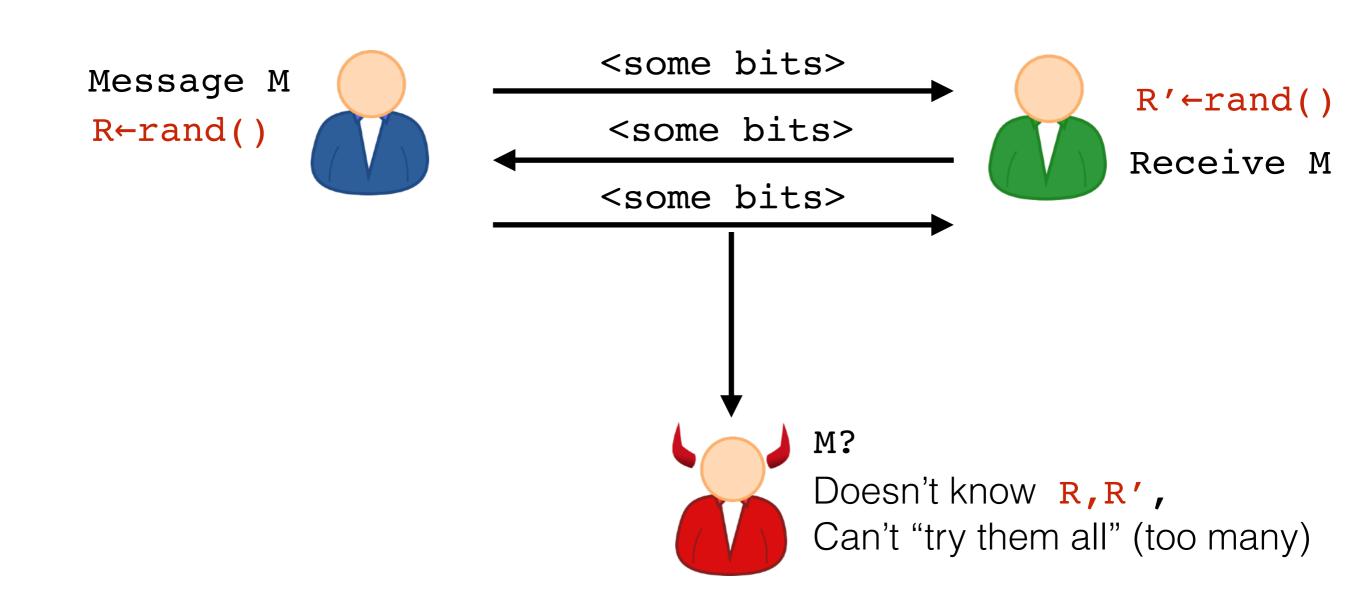
Turing Award, 2002, + no money

Cocks, Ellis, Williamson in 1969, at GCHQ: **Yes...**

Basic question: If two people are talking in the presence of an eavesdropper, and they don't have pre-shared a key, is there any way they can send private messages?



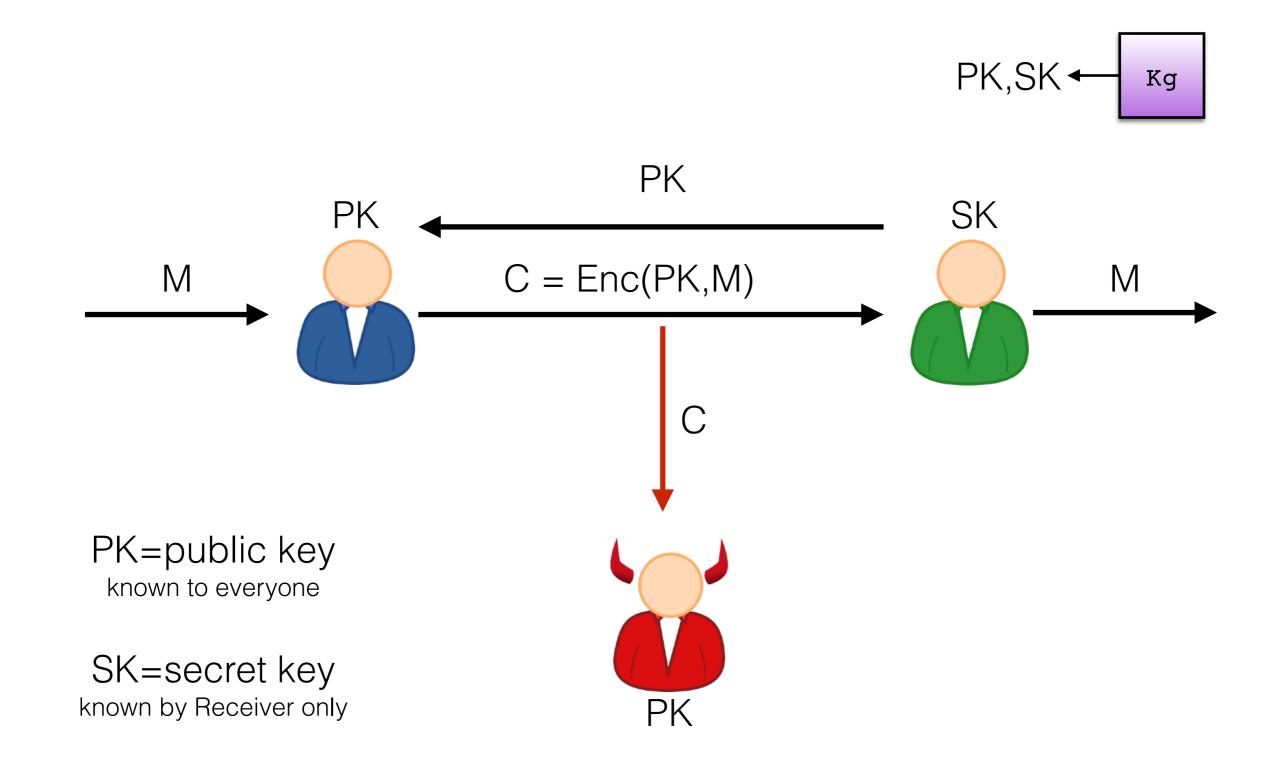
Basic question: If two people are talking in the presence of an eavesdropper, and they don't have pre-shared a key, is there any way they can send private messages?

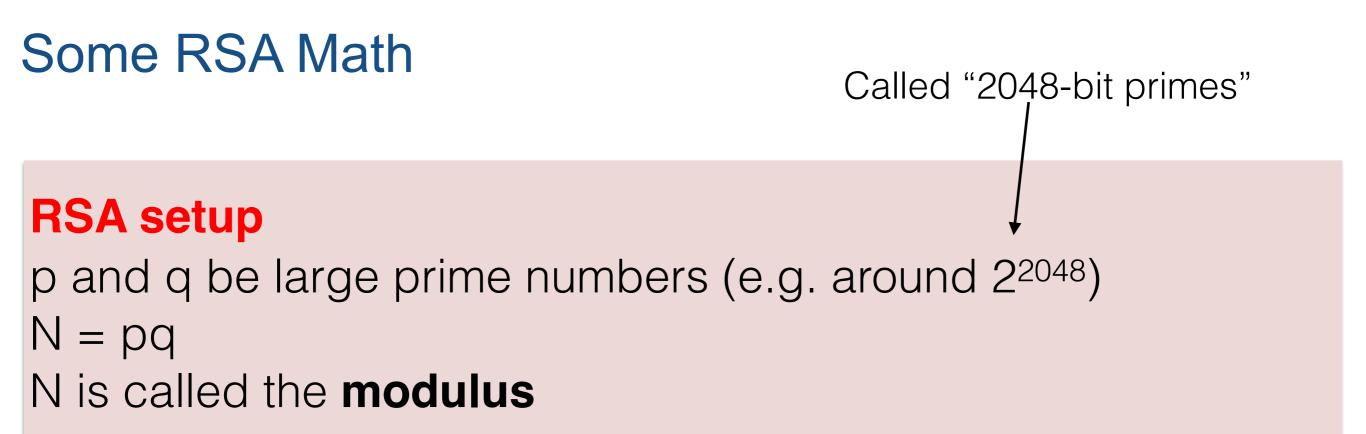


Definition. A <u>public-key encryption scheme</u> consists of three algorithms **Kg**, **Enc**, and **Dec**

- Key generation algorithm Kg, takes no input and outputs a (random) public-key/secret key pair (PK, SK)
- Encryption algorithm Enc, takes input the public key PK and the plaintext M, outputs ciphertext C←Enc(PK,M)
- <u>Decryption algorithm Dec</u>, is such that
 <u>Dec(SK,Enc(PK,M))=M</u>

Public-Key Encryption in Action





RSA "Trapdoor Function"

PK = (N, e) SK = (N, d) where N = pq, $ed = 1 \mod \phi(N)$

 $RSA((N, e), x) = x^e \mod N$ $RSA^{-1}((N, d), y) = y^d \mod N$

Setting up RSA:

- Need two large random primes
- Have to pick e and then find d
- Not covered in 232/332: How this really works.

Never use directly as encryption!

Encrypting with the RSA Trapdoor Function

"Hybrid Encryption":

- Apply RSA to random x
- Hash x to get a symmetric key k
- Encrypted message under k

<u>Enc((N,e),M)</u>:

```
1. Pick random x // 0 <= x < N
2. c_0 \leftarrow (x^e \mod N)
```

```
2. C_0 \leftarrow (x < mo
3. k \leftarrow H(x)
```

```
4. c_1 \leftarrow SymEnc(k, M) // symmetric enc.
```

```
5. Output (c_0, c_1)
```

<u>Dec((N,d), (c_0, c_1)</u>:

- 1. $x \leftarrow (c_0^d \mod N)$
- 2. k←H(x)
- 3. $M \leftarrow SymDec(k, c_1)$
- 4. Output M

Do not implement yourself!

- Use RSA-OAEP, which uses hash in more complicated way.

Factoring Records and RSA Key Length

- Factoring N allows recovery of secret key
- Challenges posted publicly by RSA Laboratories

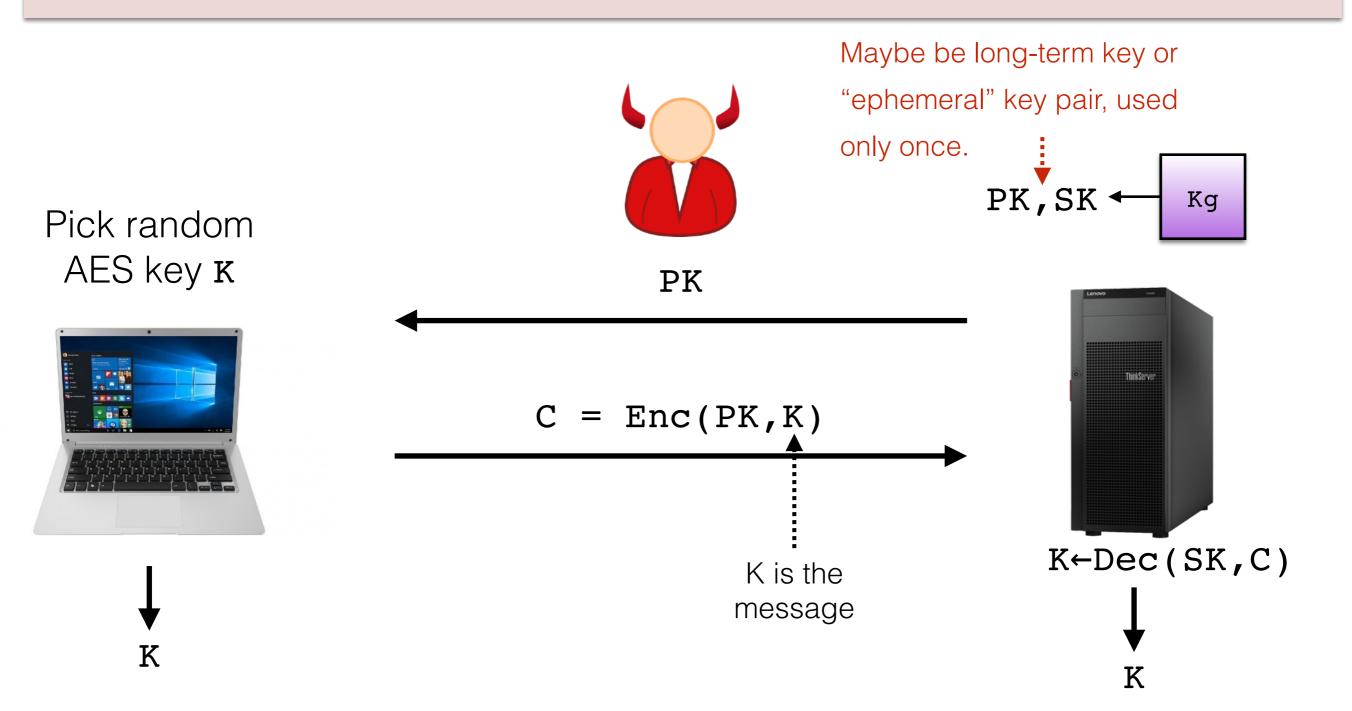
Bit-length of N	Year
400	1993
478	1994
515	1999
768	2009
795	2019

- Recommended bit-length today: 2048
- Note that fast algorithms force such a large key.
 - 512-bit N defeats naive factoring

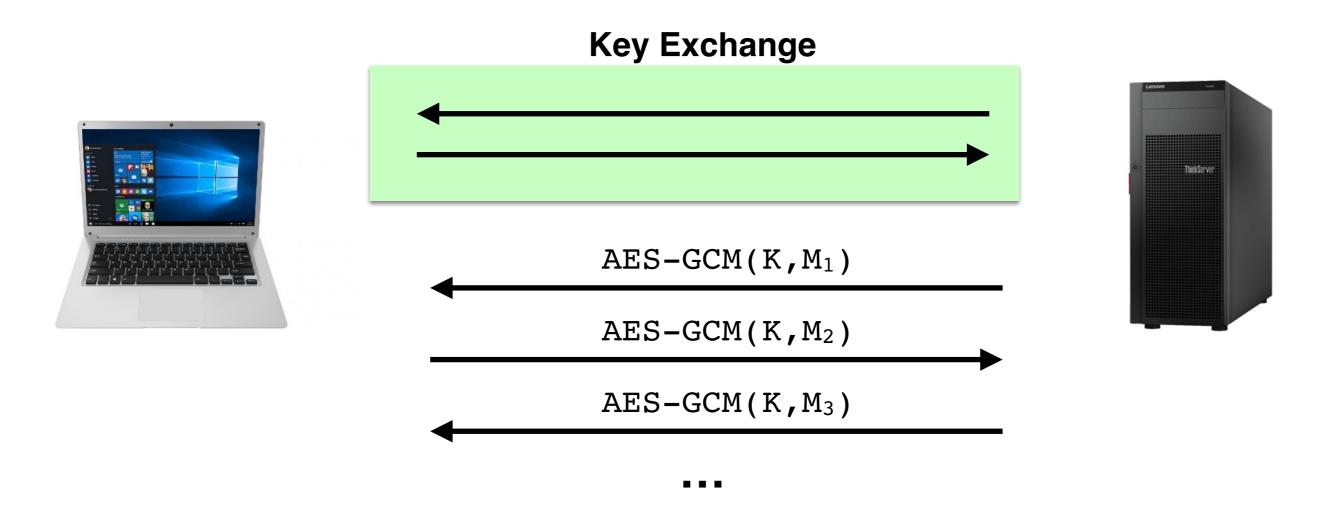
Key Exchange and Hybrid Encryption (TLS next week)

(Kg, Enc, Dec) is a public-key encryption scheme.

Goal: Establish secret key K to use with Authenticated Encryption.



Key Exchange and Hybrid Encryption



- After up-front cost, bulk encryption is very cheap

- TLS Terminology:
 - "Handshake" = key exchange
 - "Record protocol" = symmetric encryption phase

An alternative approach to key exchange

- They modulus N for RSA is relatively large
 - Mostly important because it slows down encryption/decryption
- Now: A totally different, faster approach based on different math
 - Invented in 1970s, but new ideas have recently made it the standard choice
 - Strictly speaking, not public-key encryption, but can adapted into it if needed

The Setting: Discrete Logarithm Problem

Discrete Logarithm Problem:

<u>Input</u>: Prime p, integers g, X. <u>Output</u>: integer r such that $g^r = X \mod p$.

- Different from factoring: Only one prime.
- Contrast with logarithms with real numbers, which are easy to compute. *Discrete* logarithms appear to be hard to compute
- Largest solved instances: 795-bit prime p (Dec 2019)

Diffie-Hellman Key Exchange

Parameters: (fixed in standards, used by everyone): Prime p (1024 bit usually) Number g (usually 2)

(p,g)

Diffie-Hellman Key Exchange

Parameters: (fixed in standards, used by everyone): Prime p (1024 bit usually) Number g (usually 2)

	(p,g)
Network Working Group	M. Lepinski
Request for Comments: 5114	S. Kent
Category: Informational	BBN Technologies January 2008
Additional Diffie-Hellman Groups	for Use with IETF Standards
Status of This Memo	3. 2048-bit MODP Group
This memo provides information for not specify an Internet standard of	
memo is unlimited.	This prime is: 2^2048 - 2^1984 - 1 + 2^64 * { [2^1918 pi] + 124476 }
Abstract	Its hexadecimal value is:
This document describes eight Diff	FFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFF
in conjunction with IETF protocols	29024E08 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD
communications. The groups allow	EF9519B3 CD3A431B 302B0A6D F25F1437 4FE1356D 6D51C245
with a variety of security protoco	
(SSH), Transport Layer Security (T	
(IKE).	C2007CB8 A163BF05 98DA4836 1C55D39A 69163FA8 FD24CF5F
	83655D23 DCA3AD96 1C62F356 208552BB 9ED52907 7096966D
	670C354E 4ABC9804 F1746C08 CA18217C 32905E46 2E36CE3B
	E39E772C 180E8603 9B2783A2 EC07A28F B5C55DF0 6F4C52C9 DE2BCBF6 95581718 3995497C EA956AE5 15D22618 98FA0510
	15728E5A 8AACAA68 FFFFFFF FFFFFFF
	The generator is: 2.

Diffie-Hellman Key Exchange

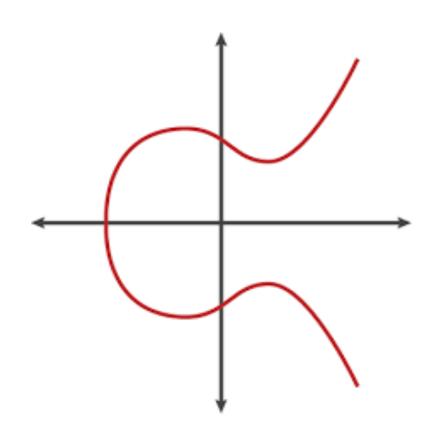
Parameters: (fixed in standards, used by everyone): Prime p (1024 bit usually) Number g (usually 2)

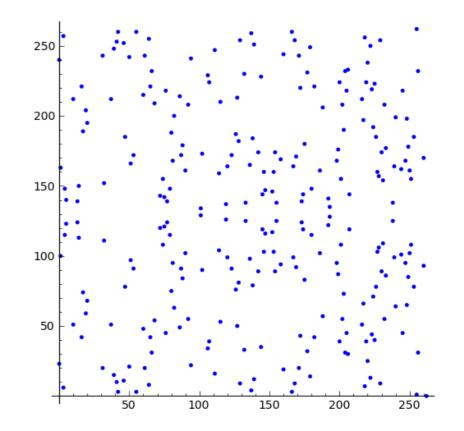
Pick $r_A \in \{1, ..., p-1\}$ $X_A \leftarrow g^{r_A} \mod p$ $K \leftarrow X_B^{r_A} \mod p$ $K \leftarrow X_B^{r_A} \mod p$ Pick $r_B \in \{1, ..., p-1\}$ $X_B \leftarrow g^{r_B} \mod p$ $K \leftarrow X_A^{r_B} \mod p$

Correctness: $X_B^{r_A} = (g^{r_B})^{r_A} = g^{r_A r_B} = (g^{r_A})^{r_B} = X_A^{r_B} \mod p$

Modern Key Exchange: *Elliptic Curve* Diffie-Hellman

- Totally different math from RSA
- Advantage: Bandwidth and computation (due to higher security)
 256 bit vs 2048-bit messages.





- Used by default in TLS

Public-Key Encryption/Key Exchange Wrap-Up

- RSA-OAEP and Diffie-Hellman (either mod a prime or in an elliptic curve) are unbroken and run fine in TLS/SSH/etc.
- Elliptic-Curve Diffie-Hellman is preferred choice going forward.

- First gen quantum computers will be far from this large
- "Post-quantum" crypto = crypto not known to be broken by quantum computers (i.e. not RSA or DH)
- On-going research on post-quantum cryptography from hard problems on lattices, with first beta deployments in recent years

Shor's algorithm, 1994

Outline

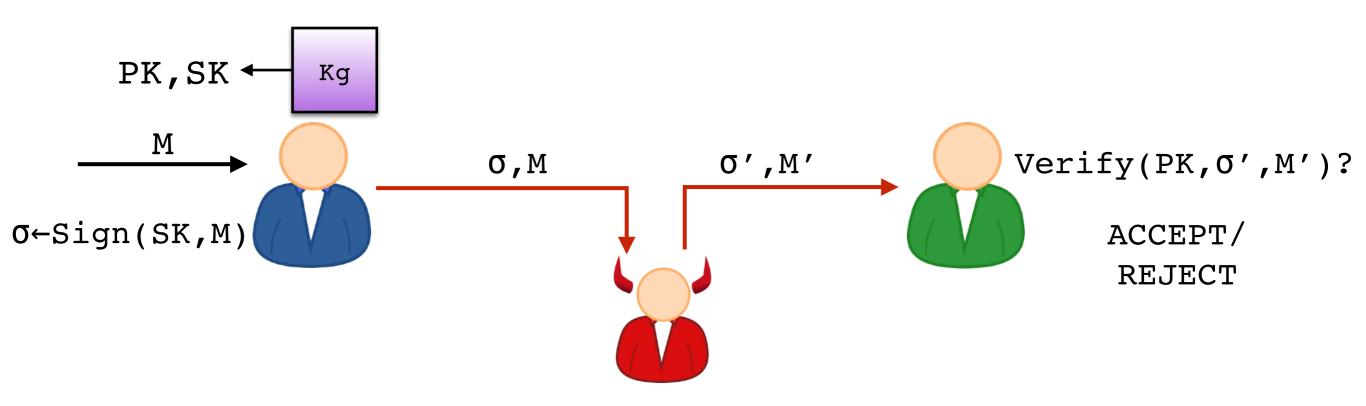
- Message Authentication
- Hash Functions
- Public-Key Encryption
- Digital Signatures

Crypto Tool: Digital Signatures

Definition. A <u>digital signature scheme</u> consists of three algorithms **Kg**, **Sign**, and **Verify**

- Key generation algorithm Kg, takes no input and outputs a (random) public-verification-key/secret-signing key pair (PK, SK)
- <u>Signing algorithm **Sign**</u>, takes input the secret key SK and a message M, outputs "signature" σ←Sign(SK,M)
- Verification algorithm Verify, takes input the public key PK, a message M, a signature σ, and outputs ACCEPT/REJECT
 Verify(PK,M,σ)=ACCEPT/REJECT

Digital Signature Security Goal: Unforgeability



Scheme satisfies **unforgeability** if it is unfeasible for Adversary (who knows PK) to fool Bob into accepting M' not previously sent by Alice.

"Plain" RSA with No Encoding

PK = (N, e) SK = (N, d) where N = pq, $ed = 1 \mod \phi(N)$

Sign((N, d), M) = $M^d \mod N$ Verify((N, e), M, σ) : $\sigma^e = M \mod N$?

e = 3 is common for fast verification; Assume e=3 below.

RSA Signatures with Encoding

PK = (N, e) SK = (N, d) where N = pq, $ed = 1 \mod \phi(N)$

Sign((N, d), M) = encode(M)^d mod N Verify((N, e), M, σ) : σ^e = encode(M) mod N?

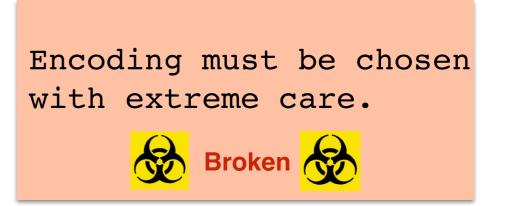
encode maps bit strings to numbers between 0 and N

Encoding needs to address:

- Small M or M = perfect cube
- "Malleability"

. . .

- "Backwards signing"



Example RSA Signature: Full Domain Hash

N: n-byte long integer. H: Hash fcn with m-byte output. Ex: SHA-256, m=32 k = ceil((n-1)/m)

<u>Sign((N,d),M)</u>:

1. X←00 | |H(1| |M) | |H(2| |M) | |...| |H(k| |M) 2. Output $\sigma = X^d \mod N$

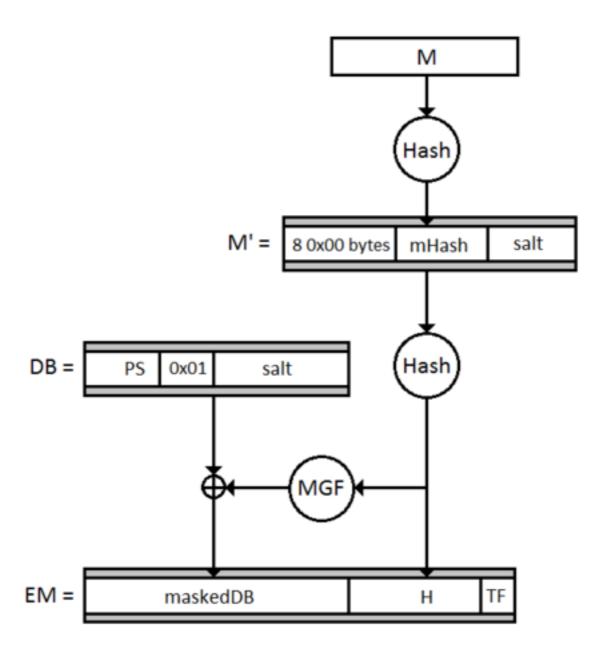
Verify((N,e),M,O):

1. $X \leftarrow 00 | |H(1||M)| |H(2||M)| |...||H(k||M)$

2. Check if $\sigma^e = X \mod N$

Other RSA Padding Schemes: PSS (In TLS 1.3)

- Somewhat complicated
- Randomized signing



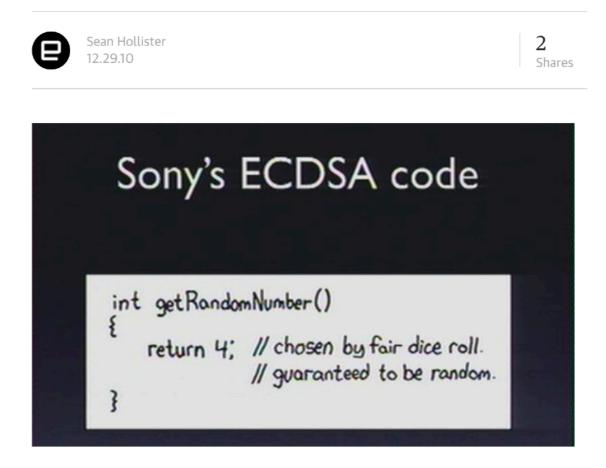
RSA Signature Summary

- Plain RSA signatures are very broken
- PKCS#1 v.1.5 is widely used, in TLS, and fine if implemented correctly
- Full-Domain Hash and PSS should be preferred
- Don't roll your own RSA signatures!

Other Practical Signatures: DSA/ECDSA

- Based on ideas related to Diffie-Hellman key exchange
- Secure, but even more ripe for implementation errors

Hackers obtain PS3 private cryptography key due to epic programming fail? (update)



The End