
David Cash & Blase Ur

Cryptography Part 2
CMSC 23200/33250, Winter 2021, Lecture 8

University of Chicago

Outline

- Message Authentication
- Hash Functions
- Public-Key Encryption
- Digital Signatures

Outline

- Message Authentication
- Hash Functions
- Public-Key Encryption
- Digital Signatures

- Authenticity: Guarantee that adversary cannot change or insert
ciphertexts

- Achieved with MAC = “Message Authentication Code”

Next Up: Integrity and Authentication

Encryption Integrity: An abstract setting

C←EncK(M) C C’ M’←DecK(C’)  
or “ERROR”

Encryption satisfies integrity if it is infeasible for an
adversary to send a new C’ such that DecK(C’)≠ERROR.

AES-CTR does not satisfy integrity

C = b0595fafd05df4a7d8a04ced2d1ec800d2daed851ff509b3e446a782871c2d

M = please pay ben 20 bucks

C’= b0595fafd05df4a7d8a04ced2d1ec800d2daed851ff509b3e546a782871c2d

M’ = please pay ben 21 bucks

Inherent to stream-cipher approach to encryption.

Message Authentication Code

A message authentication code (MAC) is an algorithm that
takes as input a key and a message, and outputs an
“unpredictable” tag.

MACK()M

K

T

T←MACK(M)

M,T

K
K

T=MACK(M)?

MAC Security Goal: Unforgeability

T←MACK(M) M,T M’,T’

“ACCEPT”  
or “ERROR”

MAC satisfies unforgeability if it is unfeasible for Adversary
to fool Bob into accepting M’ not previously sent by Alice.

T’=MACK(M’)?

MAC Security Goal: Unforgeability

T = 827851dc9cf0f92ddcdc552572ffd8bc

M = please pay ben 20 bucks

M’= please pay ben 21 bucks

M,T M’,T’

Note: No encryption on this slide.

T’= baeaf48a891de588ce588f8535ef58b6

Should be hard to predict T’ for any new M’.

MACs In Practice: Use HMAC or Poly1305-AES

- Don’t worry about how it works.
- More precisely: Use HMAC-SHA2. More on hashes and
MACs later.

- Other, less-good option: AES-CBC-MAC (bug-prone)

Authenticated Encryption

Encryption that provides confidentiality and integrity is
called Authenticated Encryption.

- Built using a good cipher and a MAC.
- Ex: AES-CTR with HMAC-SHA2

- Best solution: Use ready-made Authenticated Encryption
- Ex: AES-GCM is the standard

Breaking Encryption: Game with Active Adversaries

Authenticated Encryption Security: Adversary cannot
recover any useful information about plaintexts that it didn’t
form itself OR fool party into accepting some C’ that wasn’t
sent.

C1,C2,…M1,M2,…
K

K

M1,M2,…

M’

C’ M’

C’

Chosen
plaintexts

Chosen
ciphertexts

Building Authenticated Encryption

EncK1() MACK2()M
C

K1 K2

T

C T

EncryptK1,K2(M)

Output:  
(C,T)

MACK2()

K2

T’=T?

DecryptK1,K2(C,T)

Output:  
M’if T’=T  
⊥ if T’≠T

C
DecK1()

K1

C M’T’

- Summary: MAC the ciphertext, not the message

Outline

- Message Authentication
- Hash Functions
- Public-Key Encryption
- Digital Signatures

Next Up: Hash Functions

Definition: A hash function is a deterministic function H that reduces arbitrary
strings to fixed-length outputs.

HM H(M)

Some security goals:

- collision resistance: can’t find M != M’ such that H(M) = H(M’)

- preimage resistance: given H(M), can’t find M

- second-preimage resistance: given H(M), can’t find M’ s.t.

 H(M’) = H(M)
Note: Very different from hashes used in data structures!

Why are collisions bad?

The binary
should hash to

3477a3498234f

Hashes to
3477a3498234f,

so let’s install!
MD5()=3477a3498234f

MD5()=3477a3498234f

Practical Hash Functions

Name Year Output Len (bits) Broken?

MD5 1993 128 Super-duper broken

SHA-1 1994 160 Yes

SHA-2 (SHA-256) 1999 256 No

SHA-2 (SHA-512) 2009 512 No

SHA-3 2019 >=224 No

Confusion over “SHA” names leads to vulnerabilities.

Hash Functions are not MACs

Both map long inputs to short outputs… But a hash function does not take a key.

HM H(M) MACK()M

K

T

Intuition: a MAC is like a hash function, that only the holders of key can evaluate.

MACs from Hash Functions

Goal: Build a secure MAC out of a good hash function.

- Totally insecure if H = MD5, SHA1, SHA-256, SHA-512
- Is secure with SHA-3 (but don’t do it)

Construction: MAC(K, M) = H(K || M) Warning: Broken

Upshot: Use HMAC; It’s designed to avoid this and other issues.

Later: Hash functions and certificates

Construction: MAC(K, M) = H(M || K) Just don’t

In Assignment 3: Break this construction!

Outline

- Message Authentication
- Hash Functions
- Public-Key Encryption
- Digital Signatures

Public-Key Encryption

Basic question: If two people are talking in the presence of an eavesdropper,
and they don’t have pre-shared a key, is there any way they can send private
messages?

Public-Key Encryption

Basic question: If two people are talking in the presence of an eavesdropper,
and they don’t have pre-shared a key, is there any way they can send private
messages?

Rivest, Shamir, Adleman
in 1978: Yes, differently!
Turing Award, 2002,
+ no money

Diffie and Hellman
in 1976: Yes!

Turing Award, 2015,
+ Million Dollars

Cocks, Ellis, Williamson
in 1969, at GCHQ:
Yes…

Public-Key Encryption

Basic question: If two people are talking in the presence of an eavesdropper,
and they don’t have pre-shared a key, is there any way they can send private
messages?

<some bits>

M?

Message M Receive M

Formally impossible (in some sense):
No difference between receiver and adversary.

Public-Key Encryption

Basic question: If two people are talking in the presence of an eavesdropper,
and they don’t have pre-shared a key, is there any way they can send private
messages?

R←rand()

<some bits>

Doesn’t know R,R’,
Can’t “try them all” (too many)

<some bits>

<some bits>

R’←rand()
Receive M

Message M

M?

Public-Key Encryption

Definition. A public-key encryption scheme consists of three
algorithms Kg, Enc, and Dec

- Key generation algorithm Kg, takes no input and outputs a

(random) public-key/secret key pair (PK,SK)  

- Encryption algorithm Enc, takes input the public key PK and the
plaintext M, outputs ciphertext C←Enc(PK,M)

- Decryption algorithm Dec, is such that

 Dec(SK,Enc(PK,M))=M

Public-Key Encryption in Action

PK=public key
known to everyone

SK=secret key
known by Receiver only

KgPK,SK

PK

PK

SK
M C = Enc(PK,M) M

C

PK

Some RSA Math

RSA setup
p and q be large prime numbers (e.g. around 22048)
N = pq
N is called the modulus

Called “2048-bit primes”

p=7, q=11 gives N=77
p=17 q=61 gives N=1037

RSA “Trapdoor Function”

PK = (N, e) SK = (N, d) N = pq, ed = 1 mod ϕ(N)where

RSA((N, e), x) = xe mod N

RSA−1((N, d), y) = yd mod N

Setting up RSA:
- Need two large random primes
- Have to pick e and then find d
- Not covered in 232/332: How this really works.

Warning: BrokenNever use directly as encryption!

Encrypting with the RSA Trapdoor Function

Enc((N,e),M):

1. Pick random x // 0 <= x < N
2. c0←(xe mod N)
3. k←H(x)
4. c1←SymEnc(k,M) // symmetric enc.
5. Output (c0,c1)

Dec((N,d), (c0,c1)):

1. x←(c0d mod N)
2. k←H(x)
3. M←SymDec(k,c1)
4. Output M

“Hybrid Encryption”:
- Apply RSA to random x
- Hash x to get a symmetric key k
- Encrypted message under k

Warning: BrokenDo not implement yourself!

- Use RSA-OAEP, which uses hash in more complicated way.

Bit-length of N Year

400 1993

478 1994

515 1999

768 2009

795 2019

Factoring Records and RSA Key Length
- Factoring N allows recovery of secret key
- Challenges posted publicly by RSA Laboratories

- Recommended bit-length today: 2048
- Note that fast algorithms force such a large key.

- 512-bit N defeats naive factoring

Key Exchange and Hybrid Encryption (TLS next week)

Goal: Establish secret key K to use with Authenticated Encryption.

KgPK,SK

PK

(Kg, Enc, Dec) is a public-key encryption scheme.

Pick random
AES key K

C = Enc(PK,K)

K is the
message

K K

K←Dec(SK,C)

Maybe be long-term key or
“ephemeral” key pair, used
only once.

Key Exchange and Hybrid Encryption

Key Exchange

AES-GCM(K,M1)

AES-GCM(K,M2)

AES-GCM(K,M3)

…

- After up-front cost, bulk encryption is very cheap
- TLS Terminology:

- “Handshake” = key exchange
- “Record protocol” = symmetric encryption phase

An alternative approach to key exchange

- They modulus N for RSA is relatively large
- Mostly important because it slows down encryption/decryption

- Now: A totally different, faster approach based on different math
- Invented in 1970s, but new ideas have recently made it the

standard choice
- Strictly speaking, not public-key encryption, but can adapted

into it if needed

The Setting: Discrete Logarithm Problem

Discrete Logarithm Problem:
Input: Prime p, integers g, X.
Output: integer r such that gr = X mod p.

- Different from factoring: Only one prime.
- Contrast with logarithms with real numbers, which are easy to

compute. Discrete logarithms appear to be hard to compute
- Largest solved instances: 795-bit prime p (Dec 2019)

Diffie-Hellman Key Exchange

(p, g)

Parameters: (fixed in standards, used by everyone):
Prime (1024 bit usually)
Number (usually 2)

p
g

Diffie-Hellman Key Exchange

(p, g)

Parameters: (fixed in standards, used by everyone):
Prime (1024 bit usually)
Number (usually 2)

p
g

Diffie-Hellman Key Exchange

Parameters: (fixed in standards, used by everyone):
Prime (1024 bit usually)
Number (usually 2)

p
g

(p, g)

rA ∈ {1,…, p − 1}Pick
XA ← grA mod p XA

XB

rB ∈ {1,…, p − 1}Pick
XB ← grB mod p

K ← XrA
B mod p K ← XrB

A mod p

XrA
B = (grB)rA = grArB = (grA)rB = XrB

A mod pCorrectness:

Modern Key Exchange: Elliptic Curve Diffie-Hellman

- Totally different math from RSA
- Advantage: Bandwidth and computation (due to higher security)

- 256 bit vs 2048-bit messages.

- Used by default in TLS

Public-Key Encryption/Key Exchange Wrap-Up

- RSA-OAEP and Diffie-Hellman (either mod a prime or in an
elliptic curve) are unbroken and run fine in TLS/SSH/etc.

- Elliptic-Curve Diffie-Hellman is preferred choice going forward.

Quantum computers will break:
- RSA (any padding)
- Diffie-Hellman

- First gen quantum computers will be far from this large
- “Post-quantum” crypto = crypto not known to be broken by

quantum computers (i.e. not RSA or DH)
- On-going research on post-quantum cryptography from hard

problems on lattices, with first beta deployments in recent years

Shor’s algorithm, 1994

Peter Shor

Outline

- Message Authentication
- Hash Functions
- Public-Key Encryption
- Digital Signatures

Definition. A digital signature scheme consists of three algorithms
Kg, Sign, and Verify

- Key generation algorithm Kg, takes no input and outputs a

(random) public-verification-key/secret-signing key pair (PK,SK)  

- Signing algorithm Sign, takes input the secret key SK and a
message M, outputs “signature” σ←Sign(SK,M)

- Verification algorithm Verify, takes input the public key PK, a
message M, a signature σ, and outputs ACCEPT/REJECT

 Verify(PK,M,σ)=ACCEPT/REJECT

Crypto Tool: Digital Signatures

Digital Signature Security Goal: Unforgeability

σ←Sign(SK,M)

σ,M σ’,M’

ACCEPT/  
REJECT

Scheme satisfies unforgeability if it is unfeasible for
Adversary (who knows PK) to fool Bob into accepting M’ not
previously sent by Alice.

Verify(PK,σ’,M’)?

KgPK,SK

M

PK = (N, e) SK = (N, d) N = pq, ed = 1 mod ϕ(N)where

Sign((N, d), M) = Md mod N
Verify((N, e), M, σ) : σe = M mod N?

“Plain” RSA with No Encoding Broken

e = 3 is common for fast verification; Assume e=3 below.

PK = (N, e) SK = (N, d) N = pq, ed = 1 mod ϕ(N)where

Sign((N, d), M) = encode(M)d mod N
Verify((N, e), M, σ) : σe = encode(M) mod N?

RSA Signatures with Encoding

encode maps bit strings to numbers between 0 and N

Encoding must be chosen  
with extreme care.

 Broken

Encoding needs to address:
- Small M or M = perfect cube
- “Malleability”
- “Backwards signing”
- …

Example RSA Signature: Full Domain Hash

N: n-byte long integer.
H: Hash fcn with m-byte output.
k = ceil((n-1)/m)

Ex: SHA-256, m=32

Sign((N,d),M):

1. X←00||H(1||M)||H(2||M)||…||H(k||M)
2. Output σ = Xd mod N

Verify((N,e),M,σ):
1. X←00||H(1||M)||H(2||M)||…||H(k||M)
2. Check if σe = X mod N

Other RSA Padding Schemes: PSS (In TLS 1.3)

- Somewhat complicated
- Randomized signing

RSA Signature Summary

- Plain RSA signatures are very broken
- PKCS#1 v.1.5 is widely used, in TLS, and fine if implemented

correctly
- Full-Domain Hash and PSS should be preferred
- Don’t roll your own RSA signatures!

Other Practical Signatures: DSA/ECDSA

- Based on ideas related to Diffie-Hellman key exchange
- Secure, but even more ripe for implementation errors

The End

