Cryptography Part 2

CMSC 23200/33250, Winter 2021, Lecture 8

David Cash & Blase Ur

University of Chicago

Outline

Message Authentication
Hash Functions
Public-Key Encryption
Digital Signatures

Outline

Message Authentication
Hash Functions
Public-Key Encryption
Digital Signatures

Next Up: Integrity and Authentication

- Authenticity: Guarantee that adversary cannot change or insert
ciphertexts
- Achieved with MAC = *“Message Authentication Code”

Encryption Integrity: An abstract setting

M’<Deck(C"')
or “ERROR”

D A '

Encryption satisties integrity if it is infeasible for an
adversary to send a new C’ such that Deck(C’) #ERROR,

AES-CTR does not satisfy integrity

M = please pay ben 20 bucks

C = b0595fafd05df4a7d8al4dced2dlec800d2daed851ff509b3ed446a782871c2d
\J

v
C’'= b0595fafd05df4a7d8al4dced2dlec800d2daed851f£f509b3e546a782871c2d

M’ = please pay ben 21 bucks

Inherent to stream-cipher approach to encryption.

Message Authentication Code

A message authentication code (MAC) is an algorithm that
takes as input a key and a message, and outputs an
‘unpredictable” tag.

M—| MACx() |—> T

T=MACx (M) ?

MAC Security Goal: Unforgeability

T<MACxk (M) “ l ‘ >“ T'=MACx(M')?
“ACCEPT"”
\ J or “ERROR”

MAC satisfies unforgeability if it is unfeasible for Adversary
to fool Bob into accepting M’ not previously sent by Alice.

MAC Security Goal: Unforgeability

Note: No encryption on this slide.

M = please pay ben 20 bucks

T = 827851dc9cf0£f92ddcdc552572ffd8bc

\

M, T M’ ,T’
B

M’'= please pay ben 21 bucks

T'= baeafd8a891de588ce588f£8535e£f58b6

Should be hard to predict T’ for any new M.

MACs In Practice: Use HMAC or Poly1305-AES

- Don’t worry about how it works.
- More precisely: Use HMAC-SHAZ2. More on hashes and
MACs later.

\ HMAC(k,m) |

|

* opad
output |«—— h

- Other, less-good option: AES-CBC-MAC (bug-prone)

Authenticated Encryption

Encryption that provides confidentiality and integrity is
called Authenticated Encryption.

- Built using a good cipher and a MAC.
- Ex: AES-CTR with HMAC-SHA?Z

- Best solution: Use ready-made Authenticated Encryption
- Ex: AES-GCM is the standard

Breaking Encryption: Game with Active Adversaries

Mi,My,.. C1,Co,.. < K
— @b 1 ah
Chosen \ Chosen

plaintexts ciphertexts

Authenticated Encryption Security: Adversary cannot
recover any useful information about plaintexts that it didn't

form itselt OR fool party into accepting some C’ that wasn't
sent.

Building Authenticated Encryption

Encryptxki,x2 (M)

K1l

l

M —» EHCKl()

K2

l

Decryptki,x2(C,T) K2

l

> | MACx2 ()

-Summary: MAC the ciphertext, not the message

TI

=

T'=T?

MACxk2 ()

K1l

> | Decki ()

Output:
(C,T)

Output:
M’'if T'=T
1 1f T'#T

Outline

Message Authentication
Hash Functions
Public-Key Encryption
Digital Signatures

Next Up: Hash Functions

Definition: A hash function is a deterministic function H that reduces arbitrary
strings to fixed-length outputs.

I

M—| H |[—— H(M)

v

Some security goals:

- collision resistance: can't find M = M’ such that H(M) = H(M’)

- preimage resistance: given H(M), can't find M

- second-preimage resistance: given H(M), can'’t find M’ s.1.
H(M’) = H(M)

Note: Very difterent from hashes used in data structures!

Why are collisions bad?

The binary
should hash to
3477a3498234f

Hashes to
3477a3498234f,
N\ so let’s install!
MD5(W'l)=3477a3498234f
00l

\/

L[l)=3477a3498234f
00l

MD?5 (

Practical Hash Functions

Name Year éOutput Len (bits)é Broken?

MD5 1993 128 Super-duper broken

SHA-1 1994 160 Yes
""" SHA2 (SHA-256) 1999 | 256 No
""" SHA2 (SHA512) 2000 | 512 No
""""""""""" SHA3 2019 | s=224 No

Confusion over “SHA” names leads to vulnerabilities.

Hash Functions are not MACs

—— H(M) M—>| MACk() —> T

~ |
_

Both map long inputs to short outputs... But a hash function does not take a key.

Intuition: a MAC is like a hash function, that only the holders of key can evaluate.

MACs from Hash Functions

Goal: Build a secure MAC out of a good hash function.

In Assignment 3: Break this construction!

Construction: MAC(K, M) = H(K || M) & Warning: Broken @)

- Totally insecure it H = MD5, SHA1, SHA-256, SHA-512
- |s secure with SHA-3 (but don'’t do it)

Construction: MAC(K, M) = H(M || K) &% Just don’t @)

Upshot: Use HMAC:; It's designed to avoid this and other issues.

| ater: Hash functions and certificates

Outline

Message Authentication
Hash Functions
Public-Key Encryption
Digital Signatures

Public-Key Encryption

Basic question: If two people are talking in the presence of an eavesdropper,
and they don't have pre-shared a key, is there any way they can send private
messages”?

Public-Key Encryption

Basic question: If two people are talking in the presence of an eavesdropper,
and they don't have pre-shared a key, is there any way they can send private

messages”?

Pl en
Diffie and Hellman Rivest, Shamir, Adleman Cocks, Ellis, Williamson
in 1976: Yes! in 1978: Yes, differently! in 1969, at GCHQ:
Yes...
Turing Award, 2015, Turing Award, 2002,

+ Million Dollars + NO money

Public-Key Encryption

Basic question: If two people are talking in the presence of an eavesdropper,
and they don't have pre-shared a key, is there any way they can send private
messages”?

Message M <some bits> Receive M

Formally impossible (in some sense):
No difference between receiver and adversary.

Public-Key Encryption

Basic question: If two people are talking in the presence of an eavesdropper,
and they don't have pre-shared a key, is there any way they can send private
messages”?

<some bits>

Rerand () “ <some bits>

—

<some bits>
T

Receive M

Vo

Doesn’'t know R,R’,
Can'’t “try them all” (too many)

Public-Key Encryption

Definition. A public-key encryption scheme consists of three
algorithms Kg, Enc, and Dec

- Key generation algorithm Kg, takes no input and outputs a
(random) public-key/secret key pair (PK, SK)

- Encryption algorithm Enc, takes input the public key PK and the
plaintext M, outputs ciphertext C«Enc (PK, M)

- Decryption algorithm Dec, Is such that
Dec (SK,Enc (PK,M))=M

Public-Key Encryption in Action

PK,SK<+— kg |

PK
PK —m— — SK
C = Enc(PK,M)
— & 1 O
C
PK=public key ‘ J

Known to everyone

SK=secret key “

known by Receiver only

Some RSA Math Called “204’r8—bit primes”

RSA setup '
o and g be large prime numbers (e.g. around 22048)
N = pg

N Is called the modulus

o=/, =11 gives N=77
p=17 g=61 gives N=1037

RSA "Trapdoor Function”

PK = (N,e) SK=(N,d) where N=pq, ed=1 mod ¢(N)

RSA((NV, e),x) = x*mod N
RSAY(N,d),y) = y*mod N

Setting up RSA:

- Need two large random primes

- Have to pick e and then find d

- Not covered in 232/332: How this really works.

Never use directly as encryption! z@;, Warning: Broken (S"l%

Encrypting with the RSA Trapdoor Function

"Hybrid Encryption™:

- Apply RSA to random x

- Hash x to get a symmetric key k
- Encrypted message under k

Enc((N,e),M): Dec((Nld)l (Co,C1)):
1. Pick random x // 0 <= x < N l. x<(cod mod N)

2. co—(xe mod N) 2. keH(X)

3. keH(X) 3. MeSymDec (k,c1)

4. c1<SymEnc(k,M) // symmetric enc. 4. Output M

5. Output (co,cC1)

Do not implement yourself! (S", Warning: Broken /S"l)\

- Use RSA-OAEP, which uses hash in more complicated way.

Factoring Records and RSA Key Length

- Factoring N allows recovery of secret key
- Challenges posted publicly by RSA Laboratories

Bit-length of N Year

400 1993
B R K- S
o sis | 19
""""""""""""""""""""""" 6 | 200
""""""""""""""""""""""""""" 5| 2010

- Recommended bit-length today: 2048
- Note that fast algorithms force such a large key.
- 512-bit N defeats naive factoring

Key Exchange and Hybrid Encryption (TLS next week)

(Kg, Enc, Dec) IS a public-key encryption scheme.

Goal: Establish secret key K to use with Authenticated Encryption.

Maybe be long-term key or
‘ J “ephemeral” key pair, used

only once.

¥
. PK,SK «— Kg
Pick random “ ! j

AES key K PK

C = Enc(PK,K)

A
K is the K<Dec (SK,C)
message l

K

Key Exchange and Hybrid Encryption

Key Exchange

S ———————————_—

AES-GCM (K, M)
— e

AES-GCM (K, M)
—_—————

AES-GCM (K, Ms)
— e

- After up-front cost, bulk encryption is very cheap
- TLS Terminology:
- "Handshake” = key exchange
- "Record protocol”™ = symmetric encryption phase

An alternative approach to key exchange

- They modulus N for RSA is relatively large
- Mostly important because it slows down encryption/decryption

- Now: A totally ditferent, faster approach based on different math

- Invented in 1970s, but new ideas have recently made it the
standard choice

- Strictly speaking, not public-key encryption, but can adapted
into it if needed

The Setting: Discrete Logarithm Problem

Discrete Logarithm Problem:
Input: Prime p, Integers g, X.
Qutput: integer r such that gr = X mod p.

- Different from factoring: Only one prime.

- Contrast with logarithms with real numbers, which are easy to
compute. Discrete logarithms appear to be hard to compute

- Largest solved instances: 795-bit prime p (Dec 2019)

Diffie-Hellman Key Exchange

Parameters: (fixed in standards, used by everyone):
Prime P (1024 bit usually)
Number g€ (usually 2)

(p, &)

Diffie-Hellman Key Exchange

Number g (usually 2)

etwork Working Group
equest for Comments: 5114
ategory: Informational

Status of This Memo

This memo provides information for
not specify an Internet standard o
memo is unlimited.

Abstract

This document describes eight Diff
in conjunction with IETF protocols
communications. The groups allow
with a variety of security protoco
(SSH), Transport Layer Security (T
(IKE).

FFFFFFFF
29024E08
EF9519B3
E485B576
EE386BFB
C2007CB8
83655D23
670C354E
E39E772C
DE2BCBF6

The generator is: 2.

15728E5A

(p, &)

Additional Diffie-Hellman Groups for Use with IETF Standards
2048-bit MODP Group

This group is assigned id 14.

Its hexadecimal value is:

FFFFFFFF
8A67CC74
CD3A431B
625E7EC6
5A899FA5
Al163BF05
DCA3ADY96
4ABC9804
180E8603
95581718
8AACAA68

M. Lepinski
S. Kent
BBN Technologies
January 2008

C90FDAA2
020BBEA6
302B0OA6D
F44C42E9
AE9F2411
98DA4836
1C62F356
F1746C08
9B2783A2
3995497C
FFFFFFFF

2168C234
3B139B22
F25F1437
A637ED6B
7C4B1FE6
1C55D39A
208552BB
CAl8217C
ECO07A28F
EA956AES
FFFFFFFF

Parameters: (fixed in standards, used by everyone):
Prime P (1024 bit usually)

C4C6628B
514A0879
4FE1356D
OBFF5CB6
49286651
69163FAS8
9ED52907
32905E46
B5C55DF0
15D22618

This prime is: 272048 - 271984 - 1 + 2764 * { [2°1918 pi] + 124476 }

80DC1CD1
8E3404DD
6D51C245
F406B7ED
ECE45B3D
FD24CF5F
7096966D
2E36CE3B
6F4C52C9
98FA0510

Diffie-Hellman Key Exchange

Parameters: (fixed in standards, used by everyone):
Prime P (1024 bit usually)
Number g (usually 2)

(p, &)

Pick 7 € {1,...,p — 1}

Pick ry € {1,....,p — 1} X, < g mod p
B

X, < g'"mod p

K(_X;A mod p K(—XXB mod p

Correctness: X' = (g'?)" = g"'s = (g’ = X’ mod p

Modern Key Exchange: Elliptic Curve Diffie-Hellman

- Totally different math from RSA
- Advantage: Bandwidth and computation (due to higher security)
- 256 bit vs 2048-bit messages.

N

. . * . ¢ .. .
v M 1 L E I B 1P
50 100 150 200 250

- Used by default in TLS

Public-Key Encryption/Key Exchange Wrap-Up

- RSA-OAEP and Diffie-Hellman (either mod a prime or in an
elliptic curve) are unbroken and run fine in TLS/SSH/etc.

- Elliptic-Curve Diffie-Hellman is preferred choice going forward.

Shor’s algorithm, 1994

Quantum computers will break:
- RSA (any padding)
- Ditfie-Hellman

Peter Shor

- First gen quantum computers will be far from this large

- "Post-quantum” crypto = crypto not known to be broken by
guantum computers (i.e. not RSA or DH)

- On-going research on post-quantum cryptography from hard
problems on lattices, with first beta deployments in recent years

Outline

Message Authentication
Hash Functions
Public-Key Encryption
Digital Signatures

Crypto Tool: Digital Signatures

Definition. A digital signature scheme consists of three algorithms
Kg, Sign, and Verify

- Key generation algorithm Kg, takes no input and outputs a
(random) public-verification-key/secret-signing key pair (PK, SK)

- Signing algorithm Sign, takes input the secret key SK and a
message M, outputs “signature” 0«Sign(SK, M)

- Verification algorithm Verify, takes input the public key PK, a
message M, a signature o, and outputs ACCEPT/REJECT
Verify(PK,M,0)=ACCEPT/REJECT

Digital Signature Security Goal: Unforgeability

PK,SK « Kg |

1 > o,M v, M’ . Verify(PK,0',M’')?
0<—Sign(SK,M)“ “ ACCEPT/
REJECT

Scheme satisfies unforgeability if it is unfeasible for
Adversary (who knows PK) to fool Bob into accepting M’ not
previously sent by Alice.

“Plain” RSA with No Encoding 8 wroven &
PK=(N,e) SK=(N,d) where N=pq, ed=1mod ¢(N)

Sign((N, d), M) = M9mod N
Verity((NV, e), M, 0) : 6° = Mmod N??

e = 3 is common for fast verification: Assume e=3 below.

RSA Signatures with Encoding
PK=(N,e) SK=(N,d) where N=pq, ed=1mod ¢(N)

Sign((N, d), M) = encode(M ¥ mod N
Verity((NV, e), M, o) : 6° = encode(M) mod N?

encode maps bit strings to numbers between 0 and N

Encoding needs to address:

Encoding must be chosen

- Small M or M = perfect cube with extreme care.
- “Malleability” AR Broken AN

- "Backwards signing”

Example RSA Signature: Full Domain Hash

N: n-byte long integer.
H: Hash fcn with m-byte output: Ex: SHA-256, m=32
k = ceil((n-1)/m)

Sign((N,d),M):

1. X<00 [[B(L1][M)|[BH(2[[M)]|]][BH(K]|M)
2. Output 0 = Xd mod N

Verify((N,e),M,0):

1. X<00[[B(L][M)|[BH(2][M)[]][BH(K]|M)
2. Check if 0 = X mod N

Other RSA Padding Schemes: PSS (In TLS 1.3)

- Somewhat complicated
- Randomized signing

M

M' = | 8 0x00 bytes| mHash salt

DB = PS | Ox01 salt @

. 4 . 4
EM = maskedDB H

TF

RSA Signature Summary

- Plain RSA signatures are very broken

- PKCS#1 v.1.5 is widely used, in TLS, and fine if implemented
correctly

- Full-Domain Hash and PSS should be preferred

- Don’t roll your own RSA signatures!

Other Practical Signatures: DSA/ECDSA

- Based on ideas related to Diffie-Hellman key exchange

- Secure, but even more ripe for implementation errors

Hackers obtain PS3 private
cryptography key due to epic
programming fail? (update)

@ 2

Sony’s ECDSA code

int @tRondomN\mber()

return Y. // chosen by fair dice roll.
/| Quaranteed to be random.

The End

