
14. Attacking the Web II

(plus more on how it 

works)

Blase Ur and David Cash

February 10th, 2021

CMSC 23200 / 33250



Very Basic MySQL

• Goal: Manage a database on the server

• Create a database:

– CREATE DATABASE cs232;

• Delete a database:

– DROP DATABASE cs232;

• Use a database (subsequent commands 

apply to this database):

– USE cs232;



Very Basic MySQL

• Create a table:

– CREATE TABLE potluck (id INT NOT 

NULL PRIMARY KEY AUTO_INCREMENT, 

name VARCHAR(20), food 

VARCHAR(30), confirmed CHAR(1), 

signup_date DATE);

• See your tables:

– SHOW TABLES;

• See detail about your table:

– DESCRIBE cs232;



Very Basic MySQL

• Create a table:
– INSERT INTO `potluck` 
(`id`,`name`,`food`,`confirmed`,`sig

nup_date`) VALUES (NULL, 'David 

Cash', 'Vegan Pizza’, 'Y', '2020-01-

27');

• See detail about your table:
– UPDATE `potluck` SET `food` = 'None' 
WHERE `potluck`.`name` ='David 

Cash';

• Get your data:
– SELECT * FROM potluck;



SQL Injection

• Goal: Change or exfiltrate info from 

victim.com’s database

• Main idea: Inject code through the parts of 

a query that you define



SQL Injection



SQL Injection

• Prerequisites:

– Victim site uses a database

– Some user-provided input is used as part of a 

database query

– DB-specific characters aren’t (completely) 

stripped



SQL Injection: How?

• Enter DB logic as part of query you impact

• Back-end query

– SELECT * FROM USERS WHERE USER='' 

AND PASS='';

• For username & password, attacker gives:

– ' or '1'='1

• Straightforward insertion:

– SELECT * FROM USERS WHERE USER='' 

or '1'='1' AND PASS='' or '1'='1';



SQL Injection: Why Does This Work?

• Database does what you ask in queries!



SQL Injection: Key Mitigations

• Sanitize / escape user input

– Harder than you think!

– Different encodings

– Use libraries to do this!

• Prepared statements from libraries handle 

escaping for you!

• Use PHP’s mysqli (in place of mysql) with 

prepared statements

– https://www.w3schools.com/php/php_mysql_pr

epared_statements.asp

https://www.w3schools.com/php/php_mysql_prepared_statements.asp


Sending Data to a Server

• GET request

– Data at end of URL (following “?”)

• POST request

– Typically used with forms

– Data not in URL, but rather (in slightly 

encoded form) in the HTTP request body

• PUT request

– Store an entity at a location



URL Parameters / Query String

• End of URL (GET request)
– https://www.cs.uchicago.edu/?test=foo&test2=bar



Processing Data on the Server

• Javascript is client-side

• Server-side you find Perl (CGI), PHP, 

Python (Django)

• Process data on the server

• What happens if this code crashes?



Storing Data on the Server

• Run a database on the server

• MySQL, SQLite, MongoDB, Redis, etc.

• You probably don’t want to allow access 

from anything other than localhost

• You definitely don’t want human-

memorable passwords for these



Browser Extensions

• Can access most of what the browser can

• Requires permissions system

• Malicious extensions!



What If You Get Lots of Traffic?

• CDNs (content delivery networks)



What If You Don’t Want To Code?

• CMS (content management system)

– WordPress (PHP + MySQL), Drupal


