Network threat model

- Network scanning
- Attacks on confidentiality (e.g., eavesdropping)
- Attacks on integrity (e.g., spoofing, packet injection)
- Attacks on availability (e.g., denial of service, or DoS)
Scanning and observing networks
Network Scanning: Ping

- Essential, low-level network utility
- Sends a “ping” ICMP message to a host on the internet

```bash
$ ping 66.66.0.255
PING 66.66.0.255 (66.66.0.255) 56(84) bytes of data.
64 bytes from 66.66.0.255: icmp_seq=1 ttl=58 time=41.2 ms
```

- Destination host is supposed to respond with a “pong”
 - Indicating that it can receive packets
- By default, ping messages are 56 bytes long (+ some header bytes)
 - Maximum size 65535 bytes
- What if you send a ping that is >65535 bytes long?
Ping of Death

- `$ ping –s 65535 66.66.0.255`
- Attack identified in 1997
- IPv6 version identified/fixed in 2013
Network Scanning: Traceroute

- traceroute — hops between me and host
 - Sends repeated ICMP reqs w/ increasing TTL

```
$ thor Wed Oct 24(12:51am)[~]:--> traceroute www_slack_com
traceroute to www.slack.com (52.85.115.213), 64 hops max, 52 byte packets
  1 v1router (128.135.11.1)  1.265 ms  0.788 ms  0.778 ms
  2 a06-021-100-to-d19-07-200.p2p.uchicago.net (10.5.1.186)  1.292 ms  0.749 ms  0.833 ms
  3 d19-07-200-to-h01-391-300.p2p.uchicago.net (10.5.1.46)  2.124 ms  2.435 ms  2.072 ms
  4 192.170.192.34 (192.170.192.34)  0.755 ms
     192.170.192.32 (192.170.192.32)  0.810 ms  0.701 ms
  5 192.170.192.36 (192.170.192.36)  0.887 ms  0.918 ms  0.877 ms
  6 r-equinix-isp-ae2-2213.wiscnet.net (216.56.50.45)  1.625 ms  1.803 ms  1.866 ms
  * * *
  9 * * *
  10 * * *
  11 178.236.3.103 (178.236.3.103)  4.516 ms  4.326 ms  4.320 ms
  12 * * *
  13 * * *
  14 * * *
  15 server-52-85-115-213.ind6.r.cloudfront.net (52.85.115.213)  4.554 ms  4.398 ms  4.757 ms
$ thor Wed Oct 24(12:52am)[~]:-->
```
Port Scanning

• What services are running on a server? Nmap

```
linux3 Wed Oct 24(12:54am)[~]:---> nmap www.cs.uchicago.edu

Starting Nmap 7.01 ( https://nmap.org ) at 2018-10-24 00:55 CDT
Nmap scan report for www.cs.uchicago.edu (34.203.108.171)
Host is up (0.019s latency).
Other addresses for www.cs.uchicago.edu (not scanned): 54.164.17.80 54.85.61.218
dDNS record for 34.203.108.171: ec2-34-203-108-171.compute-1.amazonaws.com
Not shown: 998 filtered ports
PORT STATE SERVICE
80/tcp open http
443/tcp open https
```

• 5 seconds to scan a single machine!!
SYN scan

Only send SYN

Responses:

• SYN-ACK — port open
• RST — port closed
• Nothing — filtered (e.g., firewall)
Port Scanning on Steroids

• How do you speed up scans for all IPv4?
 – Don’t wait for responses; pipeline
 – Parallelize: divide & conquer IPv4 ranges
 – Randomize permutations w/o collisions

• Result: the zmap tool
 – Scan all of IPv4 in 45mins (w/ GigE cxn)
 – IPv4 in 5 mins w/ 10GigE
Eavesdropping

Tools: Wireshark, tcpdump, Zeek (Bro), …

Steps:
1. Parse data link layer frames
2. Identify network flows
3. Reconstruct IP packet fragments
4. Reconstruct TCP connections
5. Parse app protocol messages
Wireshark, Detailed Protocol Analyzer
Protocol attacks
Active Attacks: Blind Spoofing

Mallory

src: Alice’s IP, SYN, seq = x

src: Alice’s IP, ACK, ack = y+1

Guess y (server’s sequence number) to open forged connection

Server

SYN-ACK, ack x+1, seq = y

Alice

- Originally: y based on time
- Defense: pseudorandom y
RST Hijacking

Mallory

src: Alice’s IP
RST, seq=y, port=p

If Mallory knows y, she has $1/2^{32}$ chance of guessing p & closing connection ➔ flood with RSTs

Server

TCP Reset attacks used widely for censorship, e.g. Great Firewall

Alice
Inter-domain routing (BGP) attacks and large-scale observation
Recall: BGP (Path-Vector Protocol)

- An AS-path: sequence of AS’s a route traverses
- Used for loop detection and to apply policy
BGP Prefix Hijacking

• Advertise a more desirable route even if the route isn’t actually more desirable, or even real

• Goal 1: Route traffic through networks you control so that you can observe the traffic

• Goal 2: Send lots of traffic to someone you don’t like (denial of service)
Corrigendum- Most Urgent

GOVERNMENT OF PAKISTAN
PAKISTAN TELECOMMUNICATION AUTHORITY
ZONAL OFFICE PESHAWAR
Plot-11, Sector A-3, Phase-V, Hayatabad, Peshawar.
Ph: 091-9217279- 5829177 Fax: 091-9217254
www.pta.gov.pk

NWFP-33-16 (BW)/06/PTA February ,2008

Subject: Blocking of Offensive Website

Reference: This office letter of even number dated 22.02.2008.

I am directed to request all ISPs to immediately block access to the following website

URL: http://www.youtube.com/watch?v=o3s8jtvvg00

IPs: 208.65.153.238, 208.65.153.253, 208.65.153.251

Compliance report should reach this office through return fax or at email peshawar@pta.gov.pk today please.

To:
1. M/s Comsats, Peshawar.
2. M/s GOL Internet Services, Peshawar.
3. M/s Cyber Internet, Peshawar.
5. M/s Paknet, Limited, Islamabad
7. M/s Supernet, Peshawar.

Deputy Director
(Enforcement)
How a Nigerian ISP Accidentally Hijacked the Internet

For 74 minutes, traffic destined for Google and Cloudflare services was routed through Russia and into the largest system of censorship in the world, China’s Great Firewall.

On November 12, 2018, a small ISP in Nigeria made a mistake while updating its network infrastructure that highlights a critical flaw in the fabric of the Internet. The mistake effectively brought down Google — one of the largest tech companies in the world — for 74 minutes.

To understand what happened, we need to cover the basics of how Internet routing works. When I type, for example, HypotheticalDomain.com into my browser and hit enter, my computer creates a web request and sends it to HypotheticalDomain.com servers. These servers likely reside in a different state or country than I do. Therefore, my Internet service provider (ISP) must determine how to route my web browser’s request to the server across the Internet. To maintain their routing tables, ISPs and Internet backbone companies use a protocol called Border Gateway Protocol (BGP).

From Snowden archives, dated April 2013

FAA702 Operations
Two Types of Collection

Upstream
- Collection of communications on fiber cables and infrastructure as data flows past.
 (FAIRVIEW, STORMBREW, BLARNEY, OAKSTAR)

You Should Use Both

PRISM
- Collection directly from the servers of these U.S. Service Providers: Microsoft, Yahoo, Google, Facebook, PalTalk, AOL, Skype, YouTube, Apple.
Current Providers

- Microsoft (Hotmail, etc.)
- Google
- Yahoo!
- Facebook
- PalTalk
- YouTube
- Skype
- AOL
- Apple

What Will You Receive in Collection (Surveillance and Stored Comms)?
It varies by provider. In general:

- E-mail
- Chat – video, voice
- Videos
- Photos
- Stored data
- VoIP
- File transfers
- Video Conferencing
- Notifications of target activity – logins, etc.
- Online Social Networking details
- Special Requests

Complete list and details on PRISM web page:
Go PRISMFAA
Dates When PRISM Collection Began For Each Provider

Microsoft 9/11/07
Yahoo 3/14/09
Google 1/14/09
Facebook 6/3/09
Paltalk 9/24/10
YouTube 2/6/11
Skype 3/31/11
AOL 3/31/11
Apple (added Oct 2012)

PRISM Program Cost: ~$20M per year

TOP SECRET//SI//ORCON//NOFORN
S-BGP / BGPsec

IP prefix announcements signed

Routes signed
— previous hop authorizes next hop

Higher levels vouch for lower levels
— e.g., ICANN vouches for ARIN, ARIN vouches for AT&T, …

Problem?
Costly and slow adoption