
Markov Models
Motivation: Casino security

• A gambler is winning too often in a dice game

• We detain him and seize the die being used

• Did he manage to sneak in a rigged die?

A legit die

Next roll

1 2 3 4 5 6

 1/6 1/6 1/6 1/6 1/6 1/6

A legit die

Next roll

1 2 3 4 5 6

 51 48 50 49 52 50

A rigged die

Next roll

1 2 3 4 5 6

 27 35 134 34 31 39

The suspect die

Next roll

1 2 3 4 5 6

 47 51 48 50 49 53

Not the only way to cheat

• Over the years, we’ve confiscated:

• Dice that favor a specific number

• Dice that like to roll the same number in a row

• Dice that alternate between low and high

• Dice that like to sum up to even numbers

The same number in a row
• Not a specific number

• 75% chance that the next number will be the same

• 25% chance it rolls another number

• Each equally likely

• 6, 6, 6, 1, 1, 4, 5, 5, 6, 3, 3, 3, 3, …

Problem: 1/6 still holds

• Die can get stuck on one number for a while

• But if it takes turns getting stuck on each:

• Over the long run, each still 1/6

• Simple averages don’t detect this

Alternating low and high
• Designed for a game with turns

• If the number is 1, 2, or 3:

• Next number very likely to be 4, 5, or 6

• And vice versa

• 3, 6, 2, 6, 3, 4, 1, 5, …

Which type of die is it?
• We can use a Markov Model

• A stochastic model that attempts to determine
by probability the behavior of a randomized
independent process.

• Throw different rigged dice many times,
record what they do

• Throw suspect die many times and
record its behavior

Training models

• Roll the rigged dice many times

• Measure the probabilities that apply to each die

• Fill them in to some kind of… table?

Testing

• Roll the suspect die many times

• Calculate the probability that each rigged die
would have rolled the same sequence

• Choose the most likely match

A specific number

Next roll

1 2 3 4 5 6

 5% 5% 75% 5% 5% 5%

What type of table?
• For this die, probabilities weren’t affected by

previous rolls

• One-dimensional table

• For our other rigged dies, they depend upon the
(one) immediately previous roll

• More generally, a Markov Model attempts to
explain a random process that depends on the
current event but not on previous events.

Two-dimensional table

• Columns are still the next roll

• Rows are the previous roll

• This matrix is known as the Transition Probability
Matrix

The same number in a row

Next roll

1 2 3 4 5 6

Prev
roll

1

2

3

4

5

6

The same number in a row

Next roll

1 2 3 4 5 6

Prev
roll

1 77 4 6 3 5 5

2 6 72 5 6 5 6

3 4 6 74 5 5 6

4 5 5 6 75 4 5

5 6 5 4 5 73 7

6 6 5 4 3 6 76

The same number in a row

Next roll

1 2 3 4 5 6

Prev
t roll

1 75% 5% 5% 5% 5% 5%

2 5% 75% 5% 5% 5% 5%

3 5% 5% 75% 5% 5% 5%

4 5% 5% 5% 75% 5% 5%

5 5% 5% 5% 5% 75% 5%

6 5% 5% 5% 5% 5% 75%

If we had only used 1-D

Next roll

1 2 3 4 5 6

 1/6 1/6 1/6 1/6 1/6 1/6

Alternating low and high
Next roll

1 2 3 4 5 6

Prev
roll

1 8% 8% 8% 25% 25% 25%

2 8% 8% 8% 25% 25% 25%

3 8% 8% 8% 25% 25% 25%

4 25% 25% 25% 8% 8% 8%

5 25% 25% 25% 8% 8% 8%

6 25% 25% 25% 8% 8% 8%

A weird one
Next roll

1 2 3 4 5 6

Prev
roll

1 12% 7% 19% 34% 8% 20%

2 … … … … … …

3 … … … … … …

4 … … … … … …

5 … … … … … …

6 … … … … … …

A specific number
Next roll

1 2 3 4 5 6

Prev
roll

1 5% 5% 75% 5% 5% 5%

2 5% 5% 75% 5% 5% 5%

3 5% 5% 75% 5% 5% 5%

4 5% 5% 75% 5% 5% 5%

5 5% 5% 75% 5% 5% 5%

6 5% 5% 75% 5% 5% 5%

1 2 3 4 5 6

5%5%
5%

25%25%

Another way to draw it…
35%

1 2 3 4 5 6

5%5%
5%

25%25%

Another way to draw it…

5%

5%
25% 5%

25%

35%

35%

Using these models

• Simulate the behavior of a die

• Compare a real die to the modeled die

• Mathematically analyze the behavior

1 2 3 4 5 6

5%5%
5%

25%25%

Simulating this die

5%

5%
25% 5%

25%

Randomly choose first roll. First = 1.

35%

35%

1 2 3 4 5 6

5%5%
5%

25%25%

Simulating this die

5%

5%
25% 5%

25%

Choose next state based on random

35%

35%

1 2 3 4 5 6

5%5%
5%

25%25%

Simulating this die

5%

5%
25% 5%

25%

Randomly choose 2. Next roll = 2.

35%

35%

1 2 3 4 5 6

5%5%
5%

25%25%

Simulating this die

5%

5%
25% 5%

25%

Choose next state based on random

35%

35%

1 2 3 4 5 6

5%5%
5%

25%25%

Simulating this die

5%

5%
25% 5%

25%

Randomly choose 6. Next roll = 6…

35%

35%

Simulated sequence

• 1, 2, 6, …

Likelihood of a sequence

• 1, 2, 1, 3

1 2 3 4 5 6

5%5%
5%

25%25%

Walk through a series of rolls

5%

5%
25% 5%

25%

First roll is a 1

35%

35%

1 2 3 4 5 6

5%5%
5%

25%25%

Walk through a series of rolls

5%

5%
25% 5%

25%

Next roll is a 2
Probability of transition = 5%
Probability of sequence = 5%

35%

35%

1 2 3 4 5 6

5%5%
5%

25%25%

Walk through a series of rolls

5%

5%
25% 5%

25%

Next roll is a 1
Probability of transition = 5%
Probability of sequence = 5% x 5% = 0.25%

35%

35%

1 2 3 4 5 6

5%5%
5%

25%25%

Walk through a series of rolls

5%

5%
25% 5%

25%

Next roll is a 3
Probability of transition = 25%
Prob. of seq. = 0.25% x 25% = 0.0625%

35%

35%

Which model fits best?

Model Prob

Specific
number 0.0625%

Same in a
row 0.1600%

Alternating
low high 0.0512%

Sum to even 0.0625%

Patterns in English text
• Markov models over sequences of words or letters

• This video: Generate sequences of words

• PA #1: Recognize sequences of letters

• Attribute to specific speaker

Generating word sequences

Next word

the is that to be …

Prev
word

the 0 0 0 0 0 …

is 17 1 14 12 2 …

that 45 23 12 7 2 …

to 37 0 9 0 8 …

be 44 4 25 13 0 …

… …

Data representation?

• Dictionary of dictionaries?

• counts[“to”][“be”] = 8

Dictionary of dictionaries
the question = 1, answer = 3, whether = 9

is to = 7, that = 6, not = 14

that …

to …

be …

Required operations

• Adding a new word to the table

• Incrementing the frequency of a word pair

• Randomly choosing the next word based on the
previous word, using probabilities

Required operations

• Adding a new word to the table: CHEAP

• Incrementing frequency of a word pair: CHEAP

• Randomly choosing the next word based on the
previous word, using probabilities: EXPENSIVE

Improving random selection

• Need a data structure that lets us “throw dart”
and pick the word we hit

• Lists: cheap lookup for specific index

• But how to bias the probabilities?

Duplicate entries
• Words can appear multiple times in list

• Appear more times → more likely to be randomly chosen

• In list that corresponds to specific previous word:

• Words appear once per occurrence in training text

• Probability of selection is:
num occurrences / num times preceding word appeared

Hash table of lists
the question, answer, question

is not, to, to, that, not, to, not, that

that …

to …

be …

Required operations

• Adding a new word to the table: ?

• Incrementing frequency of a word pair: ?

• Randomly choosing the next word based on the
previous word, using probabilities: CHEAP

Killing three birds

• Adding new word: just append to end

• Adding another occurrence: just append to end

Required operations

• Adding a new word to the table: CHEAP

• Incrementing frequency of a word pair: CHEAP

• Randomly choosing the next word based on the
previous word, using probabilities: CHEAP

class TextGen:

 def __init__(self,words):
 self._nextwords = {}
 self.learn(words)

 def learn(self,words):
 prev = words[-1] # wrap around
 for word in words:
 if prev in self._nextwords:
 self._nextwords[prev].append(word)
 else:
 self._nextwords[prev] = [word]
 prev = word

 def generate(self,nwords):
 # choose random starting word
 start_words = self._nextwords.keys()
 prev = start_words[rand.randint(0, len(start_words) - 1)]
 rv = prev + " "

 for i in range(nwords):
 next_words = self._nextwords.get(prev, None)
 if next_words is None:
 # last word in training data
 # and no information on possible successors
 return rv
 next_word = next_words[rand.randint(0, len(next_words) - 1)]
 rv = rv + next_word + " "
 prev = next_word
 return rv[:-1]

Presidential debates
• “… certainty. It's in Kosovo, supporting me. Why?

Because that's the Internet to use American troops
down, and where the authority wisely….”

• “… ports. And we have been doing a while. And I
meet with insurance that money out there. The
middle-class need more…”

• “… campaign contributions. Senator Obama has
not in the fundamental difference. Tragically, I know
our rhetoric. That's what's the people, and I…”

What type of table?
• For simple die, probabilities weren’t affected by

previous rolls

• One-dimensional table

• For our other rigged dies, they depend upon the
(one) immediately previous roll

• Two-dimensional table

• Suppose it depends upon the last two rolls?

3-D without glasses
Next roll

1 2 3 4 5 6

Prev
rolls

1,1 25% 8% 25% 8% 25% 8%

1,2 8% 25% 8% 25% 8% 25%

1,3 25% 8% 25% 8% 25% 8%

… …

2,1 25% 8% 25% 8% 25% 8%

… …

Text generation
is the question answer weather problem

to be is or what that someone something

be that …

in that …

in the …

 def learn(self,words):
 prev = words[-self._k:] # wrap around
 for word in words:
 prev_str = “ ”.join(prev)
 if prev_str in self._nextwords:
 self._nextwords[prev_str].append(word)
 else:
 self._nextwords[prev_str] = [word]
 prev = prev[1:]
 prev.append(word)

 def generate(self, nwords):
 # choose random starting words
 start_words = list(self._nextwords.keys())
 prev = start_words[rand.randint(0, len(start_words) - 1)].split()
 rv = " ".join(prev) + " "

 for i in range(nwords):
 prev_str = “ “.join(prev)

 next_words = self._nextwords.get(prev_str, None)
 if next_words is None:
 # no information on possible successors
 return rv
 next_word = next_words[rand.randint(0, len(next_words) - 1)]
 rv = rv + next_word + " "
 prev = prev[1:]
 prev.append(next_word)
 return rv[:-1]

3rd order example

• “… is that for 30 years, politicians in Washington
haven't done anything. What Senator McCain
refers to is a measure in the Senate that would
try to broaden the mandate inside of Iraq. To
deal with Iran. And you know what insurance
companies will do? They will find a state --
maybe Arizona, maybe…”

3rd order example

• “… That's why I'm running for president, and I'm
hopeful that all of you are prepared to continue
this extraordinary journey that we call America.
But we're going to the emergency room for
treatable illnesses like asthma. And when
Senator McCain proposes a $300 billion tax cut,
$200 billion of it to the larges…”

3rd order example

• “… been doing that. Let me talk about North
Korea. It is naive and dangerous to take a policy
that he suggested the other day, which is to
have litigation reform. As I told you, we've just
got a report that said America is safer but not yet
safe. There is more work to…”

