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Goals and 
Intuition
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Relationship Between Task & Methods

• Task: explain/describe data
• Descriptive statistics (e.g., what percentage of people are late?)

• Task: use observed data to infer information about a population
• Inferential statistics (e.g., what’s the level of support for this candidate?)

• Task: draw a causal connection, explain
• Experiments, quasi-experiments, human subjects, etc.

• Task: predict characteristics of out-of-sample data
• Machine learning (prediction, forecasting, classification, etc.)



High-Level Intuition
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Why we build models…

• To understand data

• To make predictions about out-of-sample data



Models

• “All models are wrong, but some are useful.” –George Box 

• “Modelling in science remains, partly at least, an art. Some 
principles do exist, however, to guide the modeler. The first is 
that all models are wrong; some, though, are better than others 
and we can search for the better ones. At the same time we 
must recognize that eternal truth is not within our grasp.” -
McCullagh, P.; Nelder, J. A. (1983), Generalized Linear 
Models, Chapman & Hall, §1.1.4.

https://en.wikipedia.org/wiki/Chapman_%26_Hall


Regression 
Example
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Let’s Build a Model To Understand Data

• Running example: a regression problem

• Example:

Name Age Department Gender Title Salary

Jack 55 CS M Professor ??

Jane 27 Stats F
Assistant 

Professor
??

Given these input vectors… …predict this input variable



Building Intuition: Fitting a Line



Given Input Vector x, Predict y

• We need to choose a model to do that

ො𝑦 = 𝑤𝑇𝑥
ො𝑦 = 0.3𝑥

𝑥 ∈ ℝ𝑛

𝑦 ∈ ℝ

𝑤 ∈ ℝ𝑛

Input vector /

predictor

Output value /

Explanatory

Parameters / 

weights



Let’s Build a Model To Understand Data

• Running example: a regression problem

• Example:

Name Age Department Gender Title Salary

Jack 55 CS M Professor ??

Jane 27 Stats F
Assistant 

Professor
??

x1, x2, x3, x4, x5 ො𝑦

Variables/Attributes/Columns become ‘features’ of the input vector



Linear Regression Model

• ‘Linear’ because of the relationship between x and y

ො𝑦 = 𝑤𝑇𝑥 + 𝑏



Linear Regression Model

• ‘Linear’ because of the relationship between x and y

• A model is an assumption…
• …of what function represents data well

• Once we’ve fixed a model…
• …we find the parameters/weights w that make the model perform well

ො𝑦 = 𝑤𝑇𝑥 + 𝑏



Linear Regression Model

• ‘Linear’ because of the relationship between x and y

• A model is an assumption…
• …of what function represents data well

• Once we’ve fixed a model…
• …we find the parameters/weights w that make the model perform well

ො𝑦 = 𝑤𝑇𝑥 + 𝑏

We need a 

method to 

find those 

parameters

This suggests 

we need a 

performance 

metric



Our Data

• A dataset becomes a matrix
• Each row is an input vector

Name Age Department Gender Title Salary

Jack 55 CS M Professor 33000

Jill 23 Econ F Professor 32000

Josh 32 Bio M Staff 28000

Jenn 44 Bio F
Associate 

Professor
24000

Jane 27 Stats F
Assistant 

Professor
25000



Train-Test Split

• A dataset becomes a matrix
• Each row is an input vector

Name Age Department Gender Title Salary

Jack 55 CS M Professor 33000

Jill 23 Econ F Professor 32000

Josh 32 Bio M Staff 28000

Jenn 44 Bio F
Associate 

Professor
24000

Jane 27 Stats F
Assistant 

Professor
25000

Dataset 

contains the 

target 

variable / 

label

Training
dataset

Test
dataset



Performance Metric

• Mean Squared Error (MSE)
• Error decreases to 0 when predicted y = ground-truth y

• Goal: We want the model to perform well on the test data, which 
has “never been seen before” (out-of-sample data)

m test examples



Building Intuition…

• “With four parameters I can fit an elephant, and with five I can 
make him wiggle his trunk.” 

• John von Neumann (born Neumann János Lajos)



Higher Capacity Models

• We can increase the capacity of the model by adding more 
parameters; this will help with obtaining a ‘better’ fit

ො𝑦 = 𝑤𝑇𝑥

𝑥 ∈ ℝ𝑛

𝑦 ∈ ℝ

𝑤 ∈ ℝ𝑛



Goal

• We want to find parameters w using the training dataset

• This is an optimization problem that we know how to solve well
• We can find the minimum MSE

• Consider we run this optimization with the training data. What 
will happen when we run on test data?

We want to achieve 

a low training error



Optimization

• We want to find parameters w using the training dataset

• This is an optimization problem that we know how to solve well; 
we can find the minimum MSE

• Consider that we run this optimization with the training data. 
What will happen when we run it on the test data?



Challenges

24



Challenges For Machine Learning

• Learn parameters so the model performs well on unseen data
• Generalize to unseen data

• As opposed to the optimization problem of doing well on training data

• Remember why we build models:
• To understand the process that generated the data

• To make predictions about out-of-sample data

• Do you think minimizing the MSE on the training data helps us 
achieve any of those two goals?



Underfitting, Overfitting

• Underfitting
• When a model cannot reduce the training error

• Overfitting
• A model achieves low training error but high test error

• Ideally, we want low training error and small gap between 
training and test error

• That’s a model that explains the data generation process

• That’s a model that helps us predict out-of-sample data



Underfitting, Overfitting…

Overfit

Possibly 

Appropriate

Underfit



So, What Is Machine Learning?

• A model
• Linear regression, logistic regression, …

• Parameters

• A performance metric
• MSE

• A training objective
• Loss function

• A strategy to learn/fit the model parameters



One Common Task 
Formulation: 
Classification
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Classification Problem

• Given an input vector x, predict a class c
• Binary classification problems

• Spam vs. not spam

• Give loan vs. don’t

• Admit student vs. don’t

• Will reoffend vs. won’t

• How do you evaluate this?
• Accuracy, false positives/negatives, …

Find a 

hyperplane 

that separates 

the space of 

positive and 

negative 

samples



Classification Problem

• Build a model that can predict the 
categorical value of an unseen object

• Problem setting
• X – set of possible instances with features xi

• Y – target class

• Unknown target function f: X →Y

• Set of function hypotheses H={h|h: X →Y}

• Input 
• Training examples {(𝒙(1), 𝑦(1)),…(𝒙(𝑁), 𝑦(𝑁))} of unknown 

distribution

• Output 
• Hypothesis ℎ ∈ H that best approximates target function f

𝒙𝟏

𝒙𝟐
height

w

fluffiness

?



Logistic Regression

• Widely used models for binary classification:

• Models P(y=1|x), the probability of y=1 given x

“Get a FREE sample ...” 1 = ”Spam”
0 = “Not spam”



Model Architectures
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Some ML Model Architectures

• Regression models

• Decision trees

• Support Vector Machines (SVMs)

• Deep neural networks

• Many, many others:
• PGM, genetic algorithms…



Example Decision Tree

35Taken from https://en.wikipedia.org/wiki/Decision_tree_learning#/media/File:Cart_tree_kyphosis.png



The Fast Fashion of Model Architectures

• Support vector machine (Boser et al. 1992) 

• Learning is convex (globally optimal weights) 

• Research shifted away from neural networks to SVMs / Kernel Methods

• SVMs are good for medium-large data.

• What about REALLY BIG data?



Ensemble Methods
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Ensemble Methods

• Simplest approach: 

1. Generate multiple classifiers 

2. Each votes on test instance 

3. Take majority as classification

• Classifiers can be different due to

• different sampling of training data

• randomized parameters within the 
classification algorithm

• inductive bias (e.g, decision tree + 
perceptron + kNN) 



Random Forests

• Definition: Ensemble of decision trees 

• Algorithm: 

• Divide training examples into multiple training sets (bagging) 

• Train a decision tree on each set 

• randomly select subset of variables to consider 

• Aggregate the predictions of each tree to make classification decision 

• e.g., can choose mode (most often) vote



Regression Tree Ensemble



Regression Tree Ensemble



XGBoost

Figure: https://www.slideshare.net/JaroslawSzymczak1/xgboost-the-algorithm-that-wins-every-competition

• Developed by Chen and Guestrin (2016)
• Relies on gradient boosting



Neural Networks
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Predecessor: Perceptron (1958)

• Assume decision boundary is a 
hyperplane 

• Training = find a hyperplane 𝑤 that 
separates positive from negative 
examples 

• Testing = check on which side of the 
hyperplane examples fall

• Classifier = hyperplane that 
separates positive from negative 
examples

• See https://en.wikipedia.org/wiki/Perceptron

𝒙𝟏

𝒙𝟐
height

w

fluffiness

?

https://en.wikipedia.org/wiki/Perceptron


Neural Networks

• We can think of neural networks as combination 
of multiple linear models (perceptrons)

• Multilayer perceptron

• Why would we want to do that?

• Discover more complex decision boundaries

• Learn combinations of features

𝒙𝟏

𝒙𝟐

w1 X
X

X
X

O

O

O

O

w2

O

O



Mathematical Model of a Neuron

• We can think of neural networks as 
combination of multiple perceptrons

• Hidden features define functions 
of the inputs, computed by 
neurons

• Artificial neurons are called units

• Vanilla perceptron: activation 
function is sign(z)

z =



Neural Network Architecture 

• Neural network with one layer of four hidden units:

• Figure: Two different visualizations of a 2-layer neural network. In this 
example: 3 input units, 4 hidden units (layer 1) and 2 output units (layer 2)

• Each unit computes its value based on linear combination of values of units 
that point into it, and an activation function

Figure: http://cs231n.github.io/neural-networks-1/



Neural Network Architecture 

• Going deeper: a 3-layer 
neural network with two 
layers of hidden units

• N-layer neural network:

• N-1 layers of hidden units

• One output layer

Figure : A 3-layer neural net with 3 input units, 
4 hidden units in the first and second hidden 
layer and 1 output unit

Figure: http://cs231n.github.io/neural-networks-1/



Neural Networks at 10,000 Feet

• Y = f(X)
• F may be constructed by combining different functions

• h1 = g1 (W1 x + b1)

• h2 = g2 (W2 h1 + b2)

• …

• Activation functions
• Softmax

• Relu

• And many many more…

• Optimizers

Softmax Relu



Neural Networks: Backpropagation

• Goal: learn the weights of each layer

• Using backpropagation algorithm 

• Forward pass = prediction/inference

• Backward pass = learning

• Convert discrepancy between each output and its target value into an error 
derivative

• Compute error derivatives in each hidden layer from error derivatives in layer above

• The optimization function is non-convex



Taken from http://www.asimovinstitute.org/neural-network-zoo/



“DEEP” Learning?

• Supervised learning

• Supervised deep learning

Pictures: M. Ranzato


