Lecture 11: Statistical Privacy

CMSC 25910
Spring 2022
The University of Chicago

Today's lecture

- Discuss statistical definitions of privacy
- Understand differential privacy (DP)
 - What it is used for
 - When it helps
 - When it does not help

Outline

- Building Intuition
- Differential Privacy (DP)
- Local vs. Centralized Model
- Composition and Privacy Budget
- What DP is Not

Membership Attacks

- Is a particular data subject included in a dataset?
 - What does membership in a particular dataset imply?

Goal of Statistical Database Privacy

- Release useful information without leaking private information
 - Permit inference about a population without disclosing individual records
- Quantify/bound amount of information disclosed about individual
- First attempt at a definition: 'Ability to perform data analysis over a dataset without producing harm to any individual whose record is in the dataset'
 - Sadly, the Fundamental Law of Information Recovery ("overly accurate estimates of too many statistics can completely destroy privacy") says this is impossible!

Statistical Database Privacy

• (Abandoned) first attempt: 'Ability to perform data analysis over a *dataset* without producing *harm* to any *individual* whose record is in the dataset'

• Better Definition: Nothing about an individual is learned from dataset, D_1 , that cannot be learned from the same dataset without the individual's data, D_2

Outline

- Building Intuition
- Differential Privacy (DP)
- Local vs. Centralized Model
- Composition and Privacy Budget
- What DP is Not

Differential Privacy: Intuitive Definition

- It is not possible to tell if the input to an algorithm, A, contained an individual's data or not just by looking at the output, O, of A
 - No one can learn much about one individual from the dataset
- Including your data in a dataset does not increase your chances of being harmed
 - No matter the data
 - No matter the algorithm/query

Differential Privacy Definition

- For every pair of input datasets, D_1 , D_2 that differ in one row
 - One row: presence or absence of a single record (individual)
- For every output, O, computed via an algorithm, A...
- Adversary cannot distinguish D_1 from D_2 based on O with more than a negligible probability
- An algorithm is differentially private if its output is insensitive to the presence or absence of a single row.

EID	First Name	Last Name	Department
43	Jill	Smith	CS
33	Josh	Hartford	Econ
53	Jill	Corn	Bio

EID	First Name	Last Name	Department
33	Josh	Hartford	Econ
53	Jill	Corn	Bio

Differential Privacy Definition

- For every pair of input datasets, D_1 , D_2 that differ in one row
 - One row: presence or absence of a single record (individual)
- For every output, O, computed via an algorithm, A...
- Adversary cannot distinguish D_1 from D_2 based on O with more than a negligible probability

$$\ln\left(\frac{P(A(D_1)=0)}{P(A(D_2)=0)}\right) \leq \varepsilon$$

*The algorithm A is often referred to as the mechanism

What is Epsilon?

 Epsilon determines how insensitive is the output to the input datasets

$$\ln\left(\frac{P(A(D_1)=0)}{P(A(D_2)=0)}\right) \leq \varepsilon$$

- Smaller epsilon means higher privacy.
 - Consider epsilon = 0

Algorithms

- Randomized Response
- Laplace Mechanism
- Exponential Mechanism

Are you enjoying CS 259?

- Are you enjoying CS 259?
- Flip a coin:
 - If tails, then tell the truth
 - If heads, then flip a coin again:
 - · If heads, say 'yes'
 - If tails, say 'no'
- What does this achieve?

- Privacy is achieved because we cannot know with certainty what your answer was
 - With an unbiased coin, at least 25% of answers will be 'no'
- Yet we can obtain useful aggregate results
 - Because we know how the noise was introduced
 - Let's see how...

- Flip a coin:
 - If tails, then tell the truth
 - If heads, then flip a coin again:
 - If heads, say 'yes'
 - If tails, say 'no'

- Proportion of yes answers is the sum of:
 - Probability of flipping tails ("tell the truth") * the proportion of honest "yes" answers
 - Probability of flipping heads ("lie") * probability of flipping heads ("say 'yes' no matter the honest answer")
- Rearrange and solve for the proportion of honest "yes" answers!

Algorithms

- Randomized Response
- Laplace Mechanism
- Exponential Mechanism

Laplace Mechanism

Laplace mechanism works for numerical results

How do we add noise?

- We want to add noise so that:
 - The noisy answer does not leak private information
 - Keep DP definition in mind
 - The noisy answer is useful
- Laplace mechanism adds noise sampling from a Laplace distribution

- Mean, $\mu = 0$
- Variance = $2 * \lambda^2$
- Typically refer to: Lap(λ)

How do we choose λ ?

- $\lambda = S/\mathcal{E}$
- S is the Sensitivity: property of the query/algorithm computed over neighboring datasets, D, D'
 - Intuitive definition of Sensitivity: The maximum change one row can cause to the output of the query
- Selecting λ as above guarantees ε -DP answer

Example: SUM query

- SELECT SUM(salary) FROM employee;
- What's the maximum change achieved by varying 1 record?

Salary	Salary	Salary
35	×	35
33	33	33
34	34	34
48	48	×
47	47	47

Example: SUM query

- SELECT SUM(salary) FROM employee;
- What's the maximum change achieved by varying 1 record?

- If data is in range [a,b] (assuming a and b are both positive)
 - Sensitivity of SUM is b
- What's the sensitivity of COUNT()?

What's the Utility of Laplace Mechanism?

- Utility: how useful is the answer?
- Intuitively, how close is to the real answer
 - E(true_answer noisy_answer)²
- Think of the tradeoff between privacy (epsilon) and utility
- For more details, see Chapter 3.3 of https://www.cis.upenn.edu/~aaroth/Papers/privacybook.pdf

Exponential Mechanism

- When the answer of an algorithm is categorical, not numerical
 - Won't get into details in this class; see Chapter 3.4 of https://www.cis.upenn.edu/~aaroth/Papers/privacybook.pdf

Outline

- Building Intuition
- Differential Privacy
- Local vs. Centralized Model
- Composition and Privacy Budget
- What DP is not designed for

Centralized (Top) vs. Local (Bottom)

Centralized (Top) vs. Local (Bottom)

Centralized (Top) vs. Local (Bottom)

Outline

- Building Intuition
- Differential Privacy
- Local and Decentralized Model
- Composition and Privacy Budget
- What DP is not designed for

Composition

- Build more complicated (and useful) algorithms from primitive building blocks
- Composition rules help us reason about privacy budgets
 - Serial composition
 - If you run n DP-algorithms, serially, the resulting algorithm is ε'-DP

•
$$\varepsilon' = \varepsilon_1 + \varepsilon_2 + \dots + \varepsilon_n$$

- Parallel composition
 - When running n DP-algorithms on disjoint data, the resulting algorithm is $\max(\mathcal{E}_i)$
- Postprocessing: F(M()), if M is DP-private, then output of F is too
- A hope of DP is to design algorithms that don't consume much budget and yet produce good quality results

Tradeoffs and Caveats of DP

- Utility vs Privacy
 - How to choose parameters?
 - What model, centralized vs local, to choose?
 - Do you produce results once? Or do you let people query the DB?
 - What happens if you just let people query the DB?
- Privacy budget
 - This can be limited by the user
 - Users can talk to each other, though
 - Make sure you understand what DP guarantees!
- DP usually assumes independent data, no auxiliary data

Differentially Private Analytics

- Locally private. Google Chrome and iPhones add noise to records before sending them to the companies
- Makes sense; customers may not trust these companies!
- Companies may need to release subpoenaed datasets
- Surveillance on Google's data centers

Chrome vs. Apple

- Chrome released its DP code (RAPPOR)
- Apple didn't
 - Apple also resets the privacy budget daily
 - https://www.macobserver.com/analysis/google-apple-differential-privacy
- How much can you trust a DP implementation without knowing parameters like epsilon?

Census 2020

- Centralized model. Collect clean data (as usual) but release differentially private results only
 - CIA, FBI, IRS cannot ask for census data by law

```
18 2020.
```

- 19 (b) QUALITY.—Data products and tabulations pro-
- 20 duced by the Bureau of the Census pursuant to sections
- 21 141(b) or (c) of title 13, United States Code, in connection
- 22 with the 2020 decennial census shall meet the same or
- 23 higher data quality standards as similar products pro-
- 24 duced by the Bureau of the Census in connection with the
- 25 2010 decennial census.

Outline

- Building Intuition
- Differential Privacy
- Local vs. Centralized Model
- Composition and Privacy Budget
- What DP is Not

What DP is Not

From bbc.com

- Fitness app Strava published a heatmap showing the paths users log as they run or cycle
- Can you know the identity of a single user?
 - Does DP help?
- Can you identify any other 'privacy' problems?

What DP is Not

From bbc.com

- Fitness app Strava published a heatmap showing the paths users log as they run or cycle
- Can you know the identity of a single user?
 - Does DP help?
- Can you identify any other 'privacy' problems?