CMSC 22880 - Day 8

Looking Ahead

Today:

Static variables & methods in Java

Adding on to gates

Working up to:

Superdense codes

Quantum teleportation

Midterm: February 8th, in-person during class

The Same Entangle Circuit

- How could we construct the the Opposite Entangle Circuit?
- What other types of entangled states can we create?
- What gates do we need if both qubits start in $|0\rangle$?

The Quantum Register

- Quantum Registers hold collection of qubits used for computation, q₀,q₁,...,q_n
 - One or more may be used in a quantum circuit
 - Qubits are initialized to the ground state $|0\rangle$
- Within circuit diagrams, each qubit in the register is represented with a wire

	d ₀ . ∣0)	$q_0 \otimes q_1 \otimes \ldots \otimes q_n = 0\rangle \otimes 0\rangle \otimes \ldots \otimes 0\rangle = 000\rangle$			
L	q ₁ : 0 >	Remember: when combining qubits:			
Ť	a : 10)	Top to Bottom			
•	4 _n . 197	reads Left to Right			

Combined Same Entangle Matrix

What is the equation to solve this?

a) $M = (H \otimes Identity) \times CNOT$ b) M = CNOT x (H \otimes Identity) c) $M = (H \times Identity) \otimes CNOT$ d) $M = CNOT \otimes (H \times Identity)$

M = *CNOT*(*H*⊗*Identity*)

5

Calculating Output with $|0\rangle \bigcirc$ $|00\rangle$ $|\psi_{\text{out}}\rangle = \boldsymbol{M} |\psi_{\text{in}}\rangle$ M = $|\psi_{\text{out}}\rangle = CNOT(H \otimes Identity)|00\rangle$ $\begin{vmatrix} \psi_{\text{out}} \rangle = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ \sqrt{2} \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$

New Circuit: Add NOT gate

Additional NOT gate transforms bottom qubit to 1 before entering entangling circuit. What do you think will happen to the output qubit state?

11

Entangled Two Qubit States

Different circuit variations produce *same/opposite* entangle *with/without* phase

- We just looked at a common example that uses H+CNOT as foundation...many other entangling circuits exist!
- Resulting states are *Bell States*

$$\begin{split} \textbf{Bell States} \\ | \boldsymbol{\Phi}^+ \rangle &= \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle) = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\0\\0\\1\\1\\\end{bmatrix}, \ | \boldsymbol{\Psi}^+ \rangle &= \frac{1}{\sqrt{2}} (|01\rangle + |10\rangle) = \frac{1}{\sqrt{2}} \begin{bmatrix} 0\\1\\0\\-1\\\end{bmatrix}, \\ | \boldsymbol{\Psi}^- \rangle &= \frac{1}{\sqrt{2}} (|01\rangle - |10\rangle) = \frac{1}{\sqrt{2}} \begin{bmatrix} 0\\1\\-1\\0\\-1\\\end{bmatrix}, \\ | \boldsymbol{\Psi}^- \rangle &= \frac{1}{\sqrt{2}} (|01\rangle - |10\rangle) = \frac{1}{\sqrt{2}} \begin{bmatrix} 0\\1\\-1\\0\\\end{bmatrix} \end{split}$$

New Circuit: Add NOT gate after Entangle

Additional NOT gate on top qubit after entangle.

What do you think will happen to the output qubit state?

PRACTICE: Which matrix corresponds to circuit that produces two-qubit entangled states?

	0	0	רט			ſ1	0	1	ך0	
0	0	0	1		1	0	1	0	1	
0	0	1	0		$\sqrt{2}$	0	-1	0	1	
LO	1	0	0]			-1	0	1	0]	
A. The left					B. The right					
C. B	oth				D	. Nei	ither			

Maximally-entangled, two qubit states are often referred to as:

- a. Feynman States
- b. CNOT States
- c. Bell States
- d. Q States

(True / False) The only way to entangle two qubits is with a CNOT and a H gate.

Determine the quantum state that results from the following circuit:

(True / False) The output qubits of this quantum circuit are entangled.

Inverting CNOT and CZ

Quantum Circuit Structure

In a circuit, order and orientation of gates matters!

• What happens to the matrix when you flip the orientation of CNOT?

Review: The CNOT Gate

CNOT acts on two qubits: a control and a target. The input state is expressed as:

CNOT State Transformation

State Evolution:				
$\begin{array}{l} \text{control}\rangle \otimes \text{target}\rangle \mapsto \text{control}\rangle \otimes \text{target}\rangle \\ \psi_{\text{in}}\rangle \otimes \phi_{\text{in}}\rangle \mapsto \psi_{\text{out}}\rangle \otimes \phi_{\text{out}}\rangle \end{array}$				
$\begin{array}{l} 0\rangle \otimes 0\rangle = 00\rangle \mapsto 0\rangle \otimes 0\rangle = 00\rangle \\ 0\rangle \otimes 1\rangle = 01\rangle \mapsto 0\rangle \otimes 1\rangle = 01\rangle \\ 1\rangle \otimes 0\rangle = 10\rangle \mapsto 1\rangle \otimes 1\rangle = 11\rangle \\ 1\rangle \otimes 1\rangle = 11\rangle \mapsto 1\rangle \otimes 0\rangle = 10\rangle \end{array}$				

Invert the CNOT Gate

Quantum operations may be inverted in a circuit. What happens to their matrix?

 Let's analyze input and output relations for the inverted CNOT!

Inverted CNOT

State Evolution:

|target⟩ ⊗ |control⟩ ↦ |target⟩ ⊗ |control⟩ $|\phi_{in}\rangle \otimes |\psi_{in}\rangle \mapsto |\phi_{out}\rangle \otimes |\psi_{out}\rangle$ $|0\rangle \otimes |0\rangle = |00\rangle \mapsto |0\rangle \otimes |0\rangle = |00\rangle$ $|0\rangle \otimes |1\rangle = |01\rangle \mapsto |1\rangle \otimes |1\rangle = |11\rangle$ $|1\rangle \otimes |0\rangle = |10\rangle \mapsto |1\rangle \otimes |0\rangle = |10\rangle$ $|1\rangle \otimes |1\rangle = |11\rangle \mapsto |0\rangle \otimes |1\rangle = |01\rangle$

Invert the CNOT Gate

Inverted CNOT Matrix

The inverted CNOT has a different matrix than the standard CNOT!

State Evolution: |target⟩ ⊗ |control⟩ ↦ |target⟩ ⊗ |control⟩ $|\phi_{in}\rangle \otimes |\psi_{in}\rangle \mapsto |\phi_{out}\rangle \otimes |\psi_{out}\rangle$ $|0\rangle \otimes |0\rangle = |00\rangle \mapsto |0\rangle \otimes |0\rangle = |00\rangle$ $|0\rangle \otimes |1\rangle = |01\rangle \mapsto |1\rangle \otimes |1\rangle = |11\rangle$ $|1\rangle \otimes |0\rangle = |10\rangle \mapsto |1\rangle \otimes |0\rangle = |10\rangle$ $|1\rangle \otimes |1\rangle = |11\rangle \mapsto |0\rangle \otimes |1\rangle = |01\rangle$

25

CZ State Transformation

CZ acts on two qubits, a control and a target, selectively adding relative phase

CZ Symbol

State Evolution: $|\psi_{\rm in}\rangle \otimes |\phi_{\rm in}\rangle \mapsto |\psi_{\rm out}\rangle \otimes |\phi_{\rm out}\rangle$ $|0\rangle \otimes |0\rangle = |00\rangle \mapsto |0\rangle \otimes |0\rangle = |00\rangle$ $|0\rangle \otimes |1\rangle = |01\rangle \mapsto |0\rangle \otimes |1\rangle = |01\rangle$ $|1\rangle \otimes |0\rangle = |10\rangle \mapsto |1\rangle \otimes |0\rangle = |10\rangle$ $|1\rangle \otimes |1\rangle = |11\rangle \mapsto |1\rangle \otimes |1\rangle = |11\rangle$ 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 -1 CZ Matrix

26

Summary

- Just like order matters for combining gates and qubits, orientation is important for multi-qubit operations
 ONOT gate
- The CZ gate is special because inverting control and target results in the same qubit transformation and

matrix

Controlled Gates and the CCNOT/Toffoli

29

Controlled Gates

Think about how the NOT gate becomes the CNOT gate

Controlled Gates

- Creating a controlled gate from an arbitrary quantum gate U is possible.
- Add a second control qubit, and only apply gate if control has a probability amplitude for |1> (remember: control can be in superposition!):

Additional Controls on CNOT

- The Controlled-CNOT, CCNOT, is also called the Toffoli gate
- The Toffoli acts on three qubits: two controls and one target
 - $\circ~$ NOT operation on target if and only if both controls have a probability amplitude for |1)

CCNOT State Transformation

PRACTICE: What is the output corresponding to the input |100> for the pictured quantum circuit ?

a. |101⟩ b. |100⟩

c. |110>

d. |111>

PRACTICE: What is the output corresponding to the input |100> for the pictured quantum circuit?

1) Consider the quantum circuit pictured here. If the input is $|110\rangle$, what is the output?

a. (001) (000)

c. (100)

d. 1111

b.

2) Consider the quantum circuit pictured here. If the input is $|110\rangle$, what is the output?

1100

[101]

110

Ì111>

а.

b.

C.

d.

3) Which matrix represents a controlled-CZ operation?

