
2/17/22

1

Last Time:
Superdense Coding
Entangled states on more than 2 qubits
Started talking about Shor’s factoring algorithm

Motivation: want efficient factoring algorithm to break RSA encryption

Today:
Study factoring problem in more detail
Understand the non-quantum part of Shor’s algorithm

1

Securing Information with RSA Encryption

Makes data appear completely random unless viewed by intended recipient
If encryption key factors are unknown, data cannot be decrypted without
significant time or computer resources

2

2

Securing Information with RSA Encryption
Relies on the difficulty of factoring the product of two large prime numbers

Multiplying is easy, but factoring seems very hard!

3

What if prime factorization was easier?

3

Quantum Factoring with Shor’s Algorithm
Developed in 1994 by Peter Shor

● “Algorithms for quantum computation: discrete logarithms and factoring”
● “Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum

Computer”

Exponential speedup compared to classical techniques!

First demonstration of significant quantum speedup for a practical application

4

4

https://ieeexplore.ieee.org/document/365700
https://arxiv.org/abs/quant-ph/9508027

2/17/22

2

Factoring Problem

5

Notation: integers 𝑥, 𝑟, 𝑑
𝑥 ≡ 𝑟 mod 𝑑 means 𝑥 = 𝑟 + 𝑑𝑚, for some integer 𝑚
𝑑|𝑥 means 𝑑 divides 𝑥 (i.e. 𝑥 ≡ 0 mod 𝑑)
a non-trivial divisor of 𝑥 is an integer 𝑑, where 𝑑|𝑥 and 1 < 𝑑 < 𝑥

(1 and 𝑥 are trivial divisors)

Factoring Problem
Input: composite integer 𝑥
Output: a non-trivial divisor of 𝑥

5

Simple but Inefficient Factoring Algorithm: Trial Division

6

For 𝑑 = 2 to &loor 𝑥
If 𝑑|𝑥

Return d

Correctly outputs non-trivial divisor, but what is running time on input 𝑥 that is 𝑛 = 𝑐𝑒𝑖𝑙 log 𝑥 bits long
For each 𝑑, can check if 𝑑|𝑥 in polynomial time (𝑛!(#) steps)
But, in worst case, need to try ≈ 2

%
& values of 𝑑

Overall, algorithm requires exponential time

Ex: To factor a 1000-bit number, need to try ≈ 2'((values of 𝑑 (> # of atoms in the universe)

Breaking (modern) RSA involves factoring numbers that are thousands of bits long
Exponential time is not practical!

6

Can we Factor More Efficiently?

7

Worst-cast running time
Trial division: 2!(#) exponential time
Quadratic Sieve: better (but still exponential) bound 2!(#)

Uses elementary number theory
General Number Field Sieve: Slightly subexponential time (but still superpolynomial)

Uses not-so-elementary number theory (and an unproven but reasonable conjecture)
Still wildly impractical

No known classical algorithm can factor in polynomial time

Shor’s quantum factoring algorithm runs in polynomial time
Uses elementary number theory similar to the Quadratic Sieve
Only quantum part: determining the period of a function using QFT (quantum Fourier transform)

7

Real Experimental Results

8

Current record for largest (general) number that has been factored
Classical supercomputer: 829 bits
Quantum computer: the number 21

Not a 21-bit number… just 21 = 3 ⋅ 7

Fundamental issue: real quantum computers accumulate errors very quickly

8

2/17/22

3

Shor’s Algorithm = (a little) Number Theory + QFT

9

Say integer 𝑎 is useful for 𝑥 if 𝑎% ≡ 1 mod 𝑥, 𝑎 ≢ 1 mod 𝑥, and 𝑎 ≢ −1 mod 𝑥

Claim 1: If 𝑎 is useful for 𝑥, then gcd(𝑎 − 1, 𝑥) and gcd(𝑎 + 1, 𝑥) are both non-trivial divisors of 𝑥
gcd(𝑤, 𝑥) is greatest common divisor of 𝑤 and 𝑥 (largest 𝑑 where 𝑑|𝑤 and 𝑑|𝑥)

Claim 2: Can compute gcd(𝑤, 𝑥) in polynomial time (even on classical computer)
Using Euclid’s algorithm

Claim 3: Can find such an 𝑎 by computing period of certain function
(ignoring certain trivial special cases for 𝑥)

Claim 4: Can compute period of desired function in polynomial time on a quantum computer

Above 4 claims ⇒ quantum polynomial time factoring algorithm

9

1: Useful Values Produce Non-Trivial Divisors

10

Suppose 𝑎 is useful for 𝑥: 𝑎) ≡ 1 mod 𝑥, 𝑎 ≢ 1 mod 𝑥, and 𝑎 ≢ −1 mod 𝑥

Claim: gcd 𝑎 − 1, 𝑥 is a non-trivial divisor of 𝑥
By definition, gcd 𝑎 − 1, 𝑥 |𝑥
gcd 𝑎 − 1, 𝑥 ≠ 𝑥

If gcd 𝑎 − 1, 𝑥 = 𝑥, then 𝑥|𝑎 − 1 ⇒ 𝑎 ≡ 1 mod 𝑥; however, 𝑎 ≢ 1 mod 𝑥
gcd 𝑎 − 1, 𝑥 ≠ 1

𝑎 − 1 𝑎 + 1 ≡ 𝑎) − 1 ≡ 0 mod 𝑥 ⇒ 𝑥| 𝑎 − 1 𝑎 + 1
If gcd 𝑎 − 1, 𝑥 = 1, then 𝑥|𝑎 + 1 ⇒ 𝑎 ≡ −1 mod 𝑥; however, 𝑎 ≢ −1 mod 𝑥

By an analogous argument, so is gcd 𝑎 + 1, 𝑥

10

2: Euclid’s Algorithm Computes GCD in Polynomial Time

11

GCD(w,x)
large=max(w,x)
small=min(w,x)
r=large mod small
if r==0

return small
return GCD(r,small)

Very efficient: Runs in time 𝑂(𝑛), 𝑛 = max(log 𝑤 , log 𝑥)

11

3: Period-finding Produces Useful Values

12

Consider integer 𝑏 ∈ [2, 𝑥 − 1] where gcd 𝑥, 𝑏 = 1
Let 𝑇 denote period of function 𝑓 𝑦 = 𝑏* mod 𝑥 : is smallest positive integer s.t.

𝑓 𝑦 = 𝑓(𝑦 + 𝑇) for all 𝑦
Equivalently, 𝑏+ ≡ 1 𝑚𝑜𝑑 𝑥 (𝑓 𝑦 + 𝑇 ≡ 𝑏*,+ ≡ 𝑏*𝑏+mod 𝑥)

Claim: If 𝑇 is even and 𝑏
-
& ≢ −1 mod 𝑥, then 𝑎 = 𝑏

-
& is useful for 𝑥

𝑎) ≡ 𝑏+ ≡ 1 mod 𝑥
𝑎 ≢ −1 mod 𝑥 (by def)
𝑎 ≢ 1 mod 𝑥 (o.w. 𝑏

-
& ≡ 1 𝑚𝑜𝑑 𝑥, contradicts fact that 𝑇 is period)

For simplicity, assume 𝑥 = 𝑝𝑞 for distinct odd primes 𝑝 and 𝑞 (can extend to general case, conveys main idea)
Claim: if randomly generate 𝑏 ∈ [2, 𝑥 − 1] s.t. gcd 𝑥, 𝑏 = 1

then with probability ≥ .
/, 𝑇 is even and 𝑏

-
& ≢ −1 mod 𝑥

Proof uses more number theory, will skip

12

2/17/22

4

3: Period-finding Produces Useful Values

13

Algorithm Factor(x)
Randomly generate 𝑏 ∈ [2, 𝑥 − 1]
If gcd 𝑥, 𝑏 ≠ 1

Return gcd 𝑥, 𝑏 (is non-trivial divisor of 𝑥)
Else

𝑇 = period of function 𝑓 𝑦 = 𝑏& mod 𝑥

If 𝑇 is even and 𝑏
'
(≢ −1 mod 𝑥 (happens with prob ≥)

*)

𝑎 = 𝑏
'
((is useful for 𝑥)

Return gcd 𝑎 − 1, 𝑥 (is non−trivial divisor of 𝑥)
Else Return Factor(x)

After 𝑂(1) expected runs of algorithm, get non-trivial factor
Each run takes time poly(n) + time needed to find 𝑇
If can find 𝑇 in polynomial time, can factor in polynomial time

13

Recall: BernVaz Oracle

14

There exists a secret 3-bit code.
The oracle contains a sequence of C-NOT gates in which each input corresponding to a 1
in the secret code is the control for the response, which is the target.

14

Recall: BernVaz Simultaneous algorithm

15

Input all white balls for guess, black ball for response.
Put H-gates before and after query to oracle.
Exploit phase flip to make response bit flip C-NOT-connected input bits.
Output will be identical to secret code

H

H

H

H

H

H

H

H

What is the secret code?

15

Recall Archimedes Oracle

16

There exists a set of 3-bit codes.
Given a 3-bit guess, the oracle will flip the response if the guess is one of the 3-bit codes.

16

2/17/22

5

Recall” Archimedes Simultaneous algorithm

17

Input all white balls for guess, black ball for response.
Put H-gates before and after query to oracle.
Exploit interference of responses
Output will be all whites if 0, some non-white if 4

H

H

H

H

H

H

H

There are either 0 or 4 secret
codes. Which is it?

17

This material is based upon work supported by the National Science Foundation
under Grants No. 1730088 and No. 1730449. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science
Foundation.

18

18

