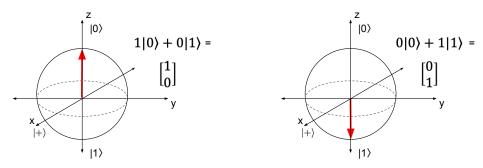
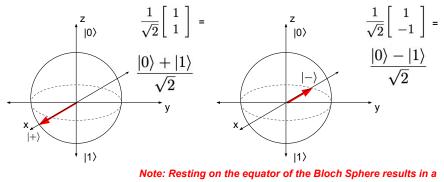


Qubit States on the Bloch Sphere



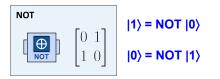
Qubit States on the Bloch Sphere

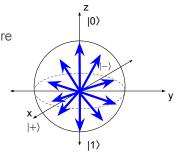


50/50 probability of measuring either $|0\rangle$ or $|1\rangle$

Single-Qubit Operations

- Qubit state represented with the Bloch Sphere
- Qubit gates we have learned about include:





6

The NOT gate is also called the X gate... It implements a rotation of π around the x-axis of the Bloch Sphere!

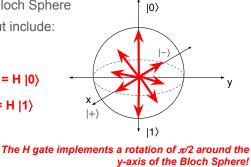
Single-Qubit Operations

н

[Н

- Qubit state represented with the Bloch Sphere
- Qubit gates we have learned about include:

|+⟩= 1/√2(|0⟩+|1⟩) = H |0⟩ |-⟩= 1/√2(|0⟩-|1⟩) = H |1⟩



z

Why is this useful?

Perform arbitrary operations

All operators are a rotation in some way

Some quantum computers can implement some gates globally and some locally, so a single (locally unsupported) gate needs to be changed into global gate, local gate, opposite global gate

Coordinate Systems: 2D to 3D

Coordinate Systems

- Must determine an object's 'address' in a space relative to a known position, the origin
- Particular applications make description with one coordinate system/dimension easier than another!
 - Are you working with a grid? Or curved lines, surfaces, or spaces?
- Trigonometric identities help us convert between coordinate systems

The origin is used as a reference point in the x-y ⁄ plane

Х

y

Trigonometry: Relating Lengths and Angles!

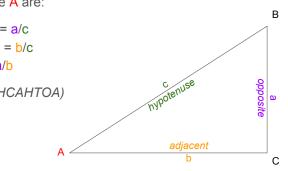
The trigonometric functions of angle A are:

- Sin(A) = opposite/hypotenuse = a/c
- Cos(A) = adjacent/hypotenuse = b/c
- Tan(A) = opposite/adjacent = a/b

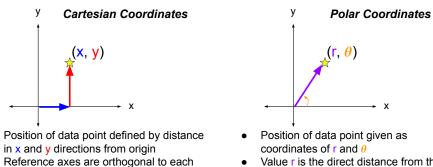
(hint: SOHCAHTOA)

Pythagorean Theorem:

• $a^2 + b^2 = c^2$



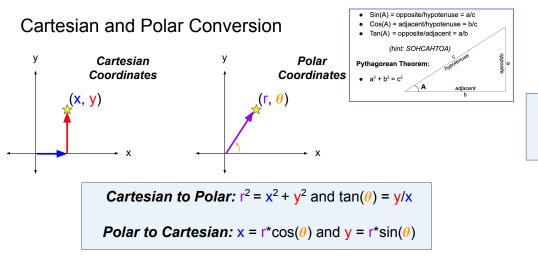
Coordinate Systems in Two Dimensions (2D)



Value r is the direct distance from the origin (the radius), and θ is angle from the x-axis

•

other (right angles)



PRACTICE: Convert 2D Cartesian coordinates (x, y) = (4,3) into Polar coordinates, (r, θ).

Cartesian to Polar: $r^2 = x^2 + y^2 a$ **Polar to Cartesian:** $x = r^* \cos(\theta)$ $r^2 = 4^2 + 3^2$ $tan(\theta) = 3/4$ r^2 = 25 $\theta = 0.643$ r = 5

Cartesian to Spherical Coordinates

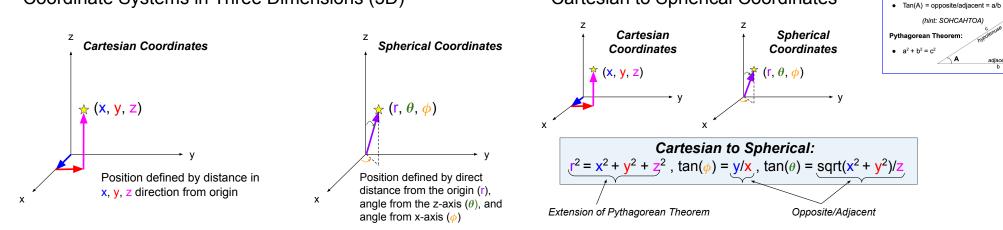
tan^(-1)(3/4)			
🛱 Extended Keyboard	1 Upload	III Examples	🔀 Random
Input			
$\tan^{-1}\left(\frac{3}{4}\right)$			
		$\tan^{-1}(x)$ is the inverse	angent function
Exact Result:			
$tan^{-1}(\frac{3}{4})$			
(result in radians)			
Decimal approximation:			More digits
0.643501108793284386	80280922871732263804151059111	53123828656061187	
(result in radians)			
Conversion from radians to	degrees:		
36.87°			
			1

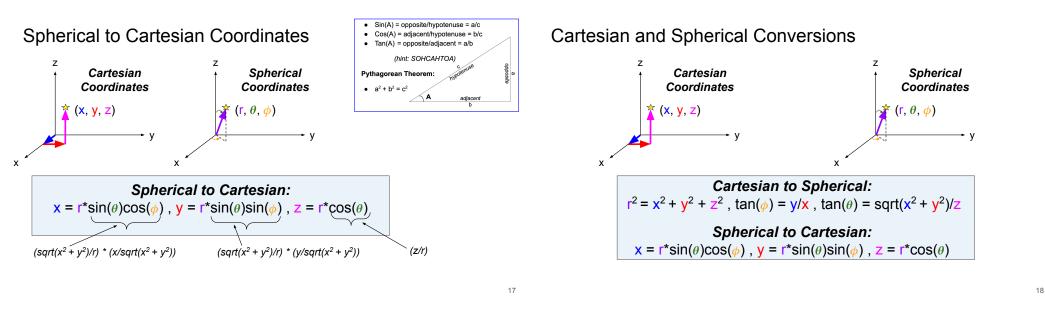
Sin(A) = opposite/hypotenuse = a/c

Cos(A) = adjacent/hypotenuse = b/c

adjacer

Coordinate Systems in Three Dimensions (3D)





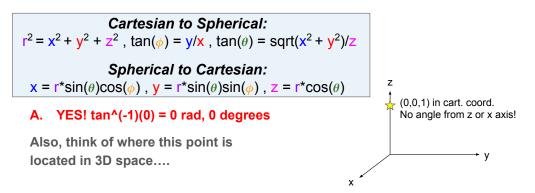
PRACTICE: Are the 3D Cartesian Coordinates (x, y, z) = (0,0,1) equal to the Spherical Coordinates (r, θ , ϕ) = (1,0,0)?

Cartesian to Spherical: $r^2 = x^2 + y^2 + z^2$, $tan(\phi) = y/x$, $tan(\theta) = sqrt(x^2 + y^2)/z$ Spherical to Cartesian: $x = r^*sin(\theta)cos(\phi)$, $y = r^*sin(\theta)sin(\phi)$, $z = r^*cos(\theta)$

A. Yes

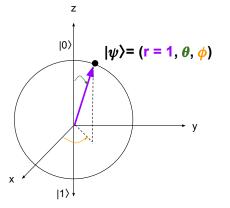
- B. No, it's equal to $(r, \theta, \phi) = (1, pi, pi/2)$
- C. No, it's equal to $(r, \theta, \phi) = (1, pi, pi/3)$
- D. No, it's equal to $(r, \theta, \phi) = (1, pi/2, pi/2)$

PRACTICE: Are the 3D Cartesian Coordinates (0,0,1) equal to the Spherical Coordinates (1,0,0)?



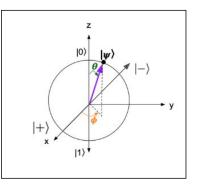
Relation to Quantum Computing

- Qubits have three attributes, two of which we have covered already
- The *Bloch Sphere* depicts the single qubit as a point on a sphere
 - All valid quantum states are on the surface of the sphere at radius 1 from origin
 - Some quantum operations are reflections or rotations around an axis
 - $\circ \quad \mbox{Other quantum operations are arbitrary} \\ {\rm rotations of } \theta \mbox{ and } \phi \\ \end{array}$



PRACTICE: What are the angles θ and ϕ for the $|+\rangle$ state?

$$\begin{aligned} \left|+\right\rangle \quad \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\1 \end{bmatrix} \quad \frac{\left|0\right\rangle + \left|1\right\rangle}{\sqrt{2}} \\ \theta &= \text{pi/2 and } \phi = \text{pi/2} \\ \theta &= \text{pi and } \phi = \text{pi/2} \\ \theta &= 0 \text{ and } \phi = \text{pi/2} \\ \theta &= \text{pi/2 and } \phi = 0 \end{aligned}$$



21

Α.

Β.

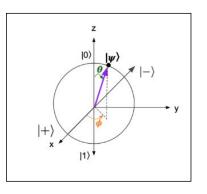
C.

D.

PRACTICE: What are the angles θ and ϕ for the $|+\rangle$ state?

$$|+\rangle \quad \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\1 \end{bmatrix} \quad \frac{|0\rangle + |1\rangle}{\sqrt{2}}$$

- A. $\theta = pi/2$ and $\phi = pi/2$
- B. θ = pi and ϕ = pi/2
- C. $\theta = 0$ and $\phi = pi/2$
- D. $\theta = pi/2$ and $\phi = 0$



PRACTICE: The Bloch Sphere Radius is equal to 1 because....

- A. Math is easier this way
- B. Probabilities associated with basis states must sum to one (hundred percent chance you must be SOMEWHERE...)
- C. It doesn't have to!
- D. |1> is a basis state