OS Security: Access Control
and the UNIX Security Model

CMSC 23200/33250, Winter 2022, Lecture 3

David Cash and Blase Ur

University of Chicago

Outline for Lecture 3

1. Wrap up “What is a process?”
2. Abstract approaches to access control (5.2)

3. UNIX notions of users, ownership, and permissions (5.1,5.3)

4. suld Permissions

Back to our diagram...

Application Application

Process || Process || Process| i «== | |Process||Process || Process

Operation System Kernel

CPU Memory Network Disk Display |[aus

_ The CPL!
Questions, though: —

e \What distinguishes the kernel from not-kernel?
e \What /s a process”?

What /s a process?

0000..00
EAX EBX e CS EBP ESP EIP
0000..04
Registers 0000..08
CPU
MMU

e (One Answer: A data structure in “kernel memory”, including

e MMU configuration
e Register values

e Kernel can load these values up, set CPL=3, and turn over
control “to the process” (i.e. set EIP)

e |f kernel regains control, it can save these values to swap
process out <max~>

Process.
state=...
usage=...

Memory

Handling Memory for a Process

0000..00
EAX EBX e CS EBP ESP EIP
0000..04
Registers 0000..08
CPU
MMU

e Kernel creates a “virtual address space” for each process.

e Same virtual addresses (e.g. starting near 0) can be used by
every process! They get translated to different physical
addresses.

e Kernel can also mark some virtual address ranges (called
segments) as “read only” or “do not execute” (EIP not
allowed to point there).

e \iolations are SEGFAULTsS: MMU will take over in this case

<max>

Process.
state=...
usage=...

Memory

Handling Memory for a Process (cont.)

0000..00
EAX| [EBX| -*- | cs ||EBP||ESP|]|EIP

| 0000..04
Registers 0000...08 process:
state=..
CPU usage=...

MMU

Memory

e Kernel can also map same memory into several processes’
virtual address space

e Ex: Code formalloc is not copied for every process.

<max>

Handling Memory for a Process (cont.)

EAX

EBX

CS

EBP

ESP

EIP

Registers

CPU

MMU

Read/Write/Execute to memory specific to pro
Read/Execute access to libc
Possibly other special “segments”

0000..00

0000..04
0000..08

sses for proc:

Not mapped!

No access to memory to Kernel or proc2 memory!

They're not even mapped; MMU will never allows access!

<max>

Kernel

memory
Not mapped!

libc

S

Kernel configures MMU to translate

proc
memory

proc?
memory

System Calls: How to let processes do privileged ops

EAX

EBX

CS

EBP

ESP

Registers

CPU

MMU

0000..00
EIP
0000..04

syscall
handler

A process (i.e. code running with CPL=3) often needs to do
privileged actions that the CPU won't allow directly

System calls allow this. They work roughly as follows:

e.g. access device, write output, spawn new process, ...

Process sets up arguments in pre-defined registers
Then process executes instruction int 0x80
CPU will set cPL=0 and jump to kernel handler

<max>

Memory

Outline for Lecture 3

1. Wrap up “What is a process?”
2. Abstract approaches to access control (5.2)
3. UNIX notions of users, ownership, and permissions (5.1,5.3)

4. suld Permissions

So we have a secure kernel... What now?

1. Maybe all processes should not be “created equal”™?
- e.g. Should one process be able to kill another?
2. Enable different people to use same machine?
- €.9. Need to enable confidential storage of tiles, sharing network, ...

3. System calls allow for safe entry into kernel, but only make sense for
low-level stuff.

- We need a higher level to “do privileged stuff” like “change my
password”.

All of this will be supported by an “access control” system.

Fundamentals of Access Control: Policies

Guiding philosophy: Utter simplicity.

Step 1: Give a crisp definition of a policy to be enforced.
1. Define a sets of subjects, objects, and verbs.

2. A policy consists of a yes/no answer for every combination of subject/
object/verb.

The Access Control Matrix

columnjﬂ
Objects
Subjects : : j
S, RW |
S, R
owi—>r " L A’J ----- .‘."(a)

e Entry in matrix is list of allowed verbs

e [he matrix is not usually actually stored; It is an abstract idea.

Enforcing Policy: Reference Monitors

access not

permitted X> Object1

permitted :
Subject request access Refergnce o > Object,
to object monitor y POlicy
s X> ObjECt3
Requirements:

1. Tamper-proot.
2. Always invoked (not circumventable).
3. Verifiable; Simple enough to test thoroughly.

4. (Usually) Logs all requests.

Example Reference Monitor: The MMU

EAX EBX

READ addr

S

EIP

MMU

SPECTRE

RAMBleed

0000..00

0000..04
0000..08

Satisfies requirements?

RowHammer

Attacking DDR4 DRAM Chips

=V

<max>

Memory

Implementing Reference Monitors: ACLs

e ACL = “access control list”

e [ogically, ACL is just a column of matrix
e Usually stored with object

e (Can quickly answer guestion: “Who can access this object?”

columnj—\ll
Objects
Subjects °1| 9 OJ
3] RW
2 | R
rowi >3 l S . Alj

“(a)

Examples:
1. VIP list at event

2. This class on Canvas

More?

Implementing Reference Monitors: Capabilities

e “Capability” (of a subject) is a row of matrix
e Usually stored with subject
e (Can quickly answer guestion: “What can this subject access?”

columnj—\ll
Objects
o, o, | 0O. | ..
Subjects 1 2 J Examples:
5 RW P 1. Movie ticket
S, R 2. Physical key to door lock
. T T) More?
FOW 1 —>1. - RSOV NUUURY RV DU L oo (a)
“...(b)

Files Descriptors in UNIX: ACL or Capability?

Memory

Process.

state=..
Process HSage.
openfiles=
l:stdin

2:stdout
open(/bar/biz) 3:/foo

OS Kernel

Process.
state=...
usage=..

openfiles=

l:stdin
2:stdout

Disk

Files Descriptors in UNIX: ACL or Capability?

Process

open(/bar/biz) 4

OS Kernel

Disk

Memory

Process.
state=..
usage=...

openfiles=
l:stdin
2:stdout
3:/foo
4:/bar/biz

Process.
state=...
usage=..

openfiles=
l:stdin
2:stdout

Files Descriptors in UNIX: ACL or Capability?

Memory

Process:
state=..
Process HSage.
openfiles=
l:stdin
2:stdout
write(4,data) OK 3:/foo

4:/bar/biz

OS Kernel

Process.
state=...
usage=..

. openfiles=

Disk l:stdin

2:stdout

Reference monitor properties?
Memory

Process:
state=..
Process HSage.
openfiles=
l:stdin
2:stdout
write(4,data) OK 3:/foo

4:/bar/biz

OS Kernel

Process.
state=...
usage=...

. openfiles=

Disk l:stdin

2 :stdout

Outline for Lecture 3

1. Wrap up “What is a process?”
2. Abstract approaches to access control (5.2)

3. UNIX notions of users, ownership, and permissions (5.1)

4. suld Permissions

What is "UNIX"? Why should we study it?

e |nitially an OS developed in the 1970s by AT&T Bell Labs.
e Ariff on "Multics™. UNIX was meant to be simpler and leaner.
e Philosophy of small programs with simple communication mechanisms

e [icensed to vendors who developed their own versions. “BSD” = “Berkeley Software
Distribution” may be most famous of those.

e | inux also later derived from UNIX. MacOS based on UNIX since 2000.

Why study UNIX?
1. Simple, even beautiful security design.

2. Looking at something concrete is enlightening.

3. You will almost certainly use it.

Ken Thompson and Dennis Ritchie, 1971

Subjects, Objects, and Verbs in UNIX (incomplete lists)

Subijects:
1. Users, identitied by numbers called UIDs
2. Processes, identified by numbers called PIDs

Objects: Verbs (listed by object):
1. Files 1. For files and memory: Read, Write, Execute
2. Directories 2. For processes: Kill, debug
3. Memory segments 3. For users: Delete user, Change groups
4. Access control information (!)
5. Processes (!)
6. Users (!)

Users, Groups, UIDs/GIDs and File Ownership

e A “user”is a sort of avatar that may or may not correspond to a person.
e Each user is identified by a number called UID that is fixed and unigque.

e FEach user may belong to 1 or more “groups”, each identified by number called GID.

All tfiles are owned by one user and one group.

Inode:
mode=1010100...
uid=davidcash
gid=cs232
ctime=..

e (Changed with commands chown and chgrp.

File Permissions L
Inode:

mode=1010100...
uid=davidcash
gid=cs232

e |ndicate read/write/execute permission respectively. ctime=..

e Three bits for each of user, group, and other/all.

user group other

dirwXx|rwXx|rwxX
'T A A A

change change

if directory ‘o “< 0“4+

special bits: [setuid|setgid| t-bit

To check access:

1.1f user is owner, then use owner perms.

2.1f user is not owner but in group, user group perms.
3. Otherwise use “other” perms. / ACL or

Capability?
e [Exception: Superuser (“root”) with UID=0 may bypass permissions.

The Root User

e “root” is the name for the administrator account

e UD=0

e (Can open/modify any file, kill any process, etc

e Rarely used as a log-in; Root's powers are typically accessed via sudo

e Why not? (Which design principle(s) does this follow?)

Process Ownership and Permissions

e FEvery process has an owner; That process runs with permissions of the owner.
e fork() creates child process with same owner

Actually.... a process has three UIDs associated with it:
1. Real UID
2. Effective UID
3. Saved UID

e Why? To allow for fine-grained control over privileges via setuid () syscall.
e |Implement least-privilege (P6) and isolated compartments (P5) in applications

Example: Web Servers

e Due to design of Linux, a web server must be run as root (!)
e Apache/NGINX written in C, a language in which vulnerabilities are common (next week!)

Apache » Http Server : Vulnerability Statistics
Vulnerabilities (232) CVSS Scores Report Browse all versions Possible matches for this product Related Metasploit Modules
Related OVAL Definitions : Vulnerabilities (288) Patches (241) Inventory Definitions (3) Compliance Definitions (0)
Vulnerability Feeds & Widgets
Vulnerability Trends Over Time
of Code Memory Sql Directory il Bypass Gain Gain File # of
L Vulnerabilities = Execution L0k Corruption Injection A Traversal R;:s;::::;e something Information Privileges S Inclusion exploits
1999 8 3 2 1
2000 7 1 1
2001 12 1 5 1
2002 20 6 3 3 2 1 2
2003 16 el 3 1 1
2004 20 8 2 4 1 3 1 1
2005 10 2 2 3 3 2
2006 4 1 2 1 1
2007 17 3 3 4 2 1 2 1
2008 12 2 1 6 1 1 1
2009 8 E 1 1
2010 9 3 2 1 1 3 1
2011 12 8 1 1 2
2012 8 4 1 1 2 1
2013 5 1 1 2
2014 11 9 1 2 2 1 1
2015 4 2 1
2016 4 2 1
2017 11 1 1 1 1 1
2018 13 3 1 1
2019 14 i i 2 1 2
Total 225 79 25 21 1 22 4 3 20 14 6 1 4
% Of All 35.1 11.1 9.3 0.4 0.0 9.8 1.8 1.3 8.9 6.2 2.7 0.4 0.0

Example: Web Servers

e Due to design of Linux, a web server must be run as root (!)

e Apache/NGINX written in C, a language in which vulnerabilities are common (next week!)

Vulnerability Details : CVE-2004-0492

Heap-based buffer overflow in proxy_util.c for mod_proxy in Apache 1.3.25 to 1.3.31 allows remote attackers to cause a denial of service (process crash) and possibly execute
arbitrary code via a negative Content-Length HTTP header field, which causes a large amount of data to be copied.
Publish Date : 2004-08-06 Last Update Date : 2017-10-10

Collapse All Expand All Select Select&Copy Scroll To Comments External Links
Search Twitter Search YouTube Search Google

= CVSS Scores & Vulnerability Types

CVSS Score -

Confidentiality Impact Complete (There is total information disclosure, resulting in all system files being revealed.)
Integrity Impact Complete (There is a total compromise of system integrity. There is a complete loss of system protection, resulting in the entire system being
compromised.)
Availability Impact Complete (There is a total shutdown of the affected resource. The attacker can render the resource completely unavailable.)
Access Complexity Low (Specialized access conditions or extenuating circumstances do not exist. Very little knowledge or skill is required to exploit.)
Authentication Not required (Authentication is not required to exploit the vulnerability.)
Gained Access Admin
Vulnerability Type(s) Denial Of Service Execute Code Overflow
CWE ID CWE id is not defined for this vulnerability
= Vendor Statements

Fixed in Apache HTTP Server 1.3.32: http://httpd.apache.org/security/vulnerabilities_13.html
Source: Apache

Example: Web Servers

e Due to design of Linux, a web server must be run as root (!)
e Apache/NGINX written in C, a language in which vulnerabilities are common (next week!)

Nginx » Nginx

: Vulnerability Statistics

Vulnerabilities (26) CVSS Scores Report Browse all versions Possible matches for this product Related Metasploit Modules

Related OVAL Definitions : Vulnerabilities (1) Patches (2) Inventory Definitions (0) Compliance Definitions (0)

Vulnerability Feeds & Widgets

Vulnerability Trends Over Time

. Http . . 2
Year Vulne#ra(:ilities DoS Ex::::teion Overflow Crri:::Zn Injescczltlion XS5 2::?::2: ';‘::’t:?ns: so?r)\’::::ng Infocrir::tion Prisia:lenges Inc'::llseion exﬁ;l(:wfits
2009 3 1 1 2 1
2010 2 1 1 1 1 3
2011 1 1 1
2012 3 1 1 1 1 1
2013 4 2 1 1 1 2
2014 4 2 2
2016 5 4 1
2017 1 1 1
2018 3
Total 26 10 5 8 1 2 2 5 1 3

% Of All 38.5 19.2 30.8 3.8 0.0 0.0 7.7 0.0 7.7 19.2 3.8 0.0 0.0

Example: Dropping Privileges in OpenSSH Server

. Connection request
(uid=0)

fork()
setuid(sshd)

<Authentication>
r————————————————————————————
fork() sshd
setuid(usef) (uid=sshd)
sshd <shell session>
) o o
(uid=user)

(Demo)

setuid() details are complicated

Setuid Demystified*
Hao Chen David Wagner Drew Dean
University of California at Berkeley SRI International
{hchen ’ daw}@cs .berkeley.edu ddean@csl.sri.com
@ setuid(1) @ setuid(1)
setuid(0) setuid(0)

R=1.E=0.S=0 R=0,E=1 ,s= setuid(1) @ R=0.E=0,5=1

setuid(0) \ setuid(0)

setuid(1)

(a) An FSA describing setuid in Linux 2.4.18

setuid(0)

setuid(0) setuid(1) setuid(1)

... really complicated

etresuid(1, 1, 0)
\77)

“setresuid(1, 1, 0) setresuid(0, 0, 0)

setresuid(1, 0, 1) [setresuid(1, 1, 0)

setresuid(0, 1, 0) setresuid(1, 1, 0) setresuid(0, 1, 1)

setresuid(0, 0, 1) | setresuid(1, 1, 0)

setresuid(0, 0, 0) setresuid(0, 1, 0)

setresuid(0, 0, 1) _setresuid(0, 0, 0)

setresuid(1, 1, 1)

setresuid(1, 1, 1)

setresuid(1, 1, 1)

' @ ESetresuid(0, 0, O)setresuid(0, 0, Tysetresuid(0, 1, Opsetresuid(0, 1, Tysetresuid(1, 0, Dpsetresuid(1, 0, Thsetresuid(1, 1, Dpsetresuid(1, 1, 1)

(c) An FSA describing setresuid in Linux

Outline for Lecture 3

1. Wrap up “What is a process?”
2. Abstract approaches to access control (5.2)

3. UNIX notions of users, ownership, and permissions (5.1)

4. suid Permissions

suid Permission: Necessity and Danger

e Passwords stored in /etc/shadow, which is owned by root
¢ [0 change my password, | need to edit that file!
e Maybe add a syscall to kernel?
e \We’d have to add a ton of syscalls... violating P8: Small Trusted Base

Solution: Special permission on a program that allows anyone to “run it as root.”

(Actually, anyone can run file with owner as uid.)

(Demo)

The End

