
David Cash and Blase Ur

OS Security: Access Control
and the UNIX Security Model
CMSC 23200/33250, Winter 2022, Lecture 3

University of Chicago

Outline for Lecture 3

1. Wrap up “What is a process?”

2. Abstract approaches to access control (5.2)

3. UNIX notions of users, ownership, and permissions (5.1,5.3)

4. suid Permissions

Back to our diagram…

Operation System Kernel

Process Process Process

Application

Process Process Process

Application

…

CPU Memory Network Disk Display …

Questions, though:
• What distinguishes the kernel from not-kernel?
• What is a process?

The CPL!

What is a process?

CPU

…

Registers

EAX EBX EBPCS ESP EIP

MMU

Memory

0000…00
0000…04
0000…08

<max>

process:
state=…  
usage=…

…

• One Answer: A data structure in “kernel memory”, including
• MMU configuration
• Register values

• Kernel can load these values up, set CPL=3, and turn over
control “to the process” (i.e. set EIP)

• If kernel regains control, it can save these values to swap
process out

Handling Memory for a Process

CPU

…

Registers

EAX EBX EBPCS ESP EIP

MMU

Memory

0000…00
0000…04
0000…08

<max>

process:
state=…  
usage=…

…

• Kernel creates a “virtual address space” for each process.
• Same virtual addresses (e.g. starting near 0) can be used by

every process! They get translated to different physical
addresses.

• Kernel can also mark some virtual address ranges (called
segments) as “read only” or “do not execute” (EIP not
allowed to point there).

• Violations are SEGFAULTs: MMU will take over in this case

Handling Memory for a Process (cont.)

CPU

…

Registers

EAX EBX EBPCS ESP EIP

MMU

Memory

0000…00
0000…04
0000…08

<max>

process:
state=…  
usage=…

…

• Kernel can also map same memory into several processes’
virtual address space

• Ex: Code for malloc is not copied for every process.

Handling Memory for a Process (cont.)

CPU

…

Registers

EAX EBX EBPCS ESP EIP

MMU

Memory

0000…00
0000…04
0000…08

<max>

Kernel
memory

proc1
memory

proc2
memory

libc

• Kernel configures MMU to translate addresses for proc1:
• Read/Write/Execute to memory specific to proc1
• Read/Execute access to libc
• Possibly other special “segments”

• No access to memory to Kernel or proc2 memory!
• They’re not even mapped; MMU will never allows access!

Not mapped!

Not mapped!

System Calls: How to let processes do privileged ops

CPU

…

Registers

EAX EBX EBPCS ESP EIP

MMU

Memory

0000…00
0000…04
0000…08

<max>

syscall
handler

• A process (i.e. code running with CPL=3) often needs to do
privileged actions that the CPU won’t allow directly

• e.g. access device, write output, spawn new process, …
• System calls allow this. They work roughly as follows:

• Process sets up arguments in pre-defined registers
• Then process executes instruction int 0x80
• CPU will set CPL=0 and jump to kernel handler

Outline for Lecture 3

1. Wrap up “What is a process?”

2. Abstract approaches to access control (5.2)

3. UNIX notions of users, ownership, and permissions (5.1,5.3)

4. suid Permissions

So we have a secure kernel… What now?

1. Maybe all processes should not be “created equal”?

- e.g. Should one process be able to kill another?

2. Enable different people to use same machine?

- e.g. Need to enable confidential storage of files, sharing network, …

3. System calls allow for safe entry into kernel, but only make sense for
low-level stuff.

- We need a higher level to “do privileged stuff” like “change my
password”.

All of this will be supported by an “access control” system.

Fundamentals of Access Control: Policies

Step 1: Give a crisp definition of a policy to be enforced.

1. Define a sets of subjects, objects, and verbs.

2. A policy consists of a yes/no answer for every combination of subject/
object/verb.

Guiding philosophy: Utter simplicity.

The Access Control Matrix

• Entry in matrix is list of allowed verbs

• The matrix is not usually actually stored; It is an abstract idea.

Enforcing Policy: Reference Monitors

Requirements:

1. Tamper-proof.

2. Always invoked (not circumventable).

3. Verifiable; Simple enough to test thoroughly.

4. (Usually) Logs all requests.

Example Reference Monitor: The MMU

CPU

…

Registers

EAX

Memory

0000…00
0000…04
0000…08

<max>

EBX EBPCPL ESP EIP

READ addr
MMU

READ addr’

Satisfies requirements?

Implementing Reference Monitors: ACLs

• ACL = “access control list”
• Logically, ACL is just a column of matrix
• Usually stored with object
• Can quickly answer question: “Who can access this object?”

Examples:

1. VIP list at event

2. This class on Canvas

More?

Implementing Reference Monitors: Capabilities

• “Capability” (of a subject) is a row of matrix
• Usually stored with subject
• Can quickly answer question: “What can this subject access?”

Examples:

1. Movie ticket

2. Physical key to door lock

More?

Files Descriptors in UNIX: ACL or Capability?
Memory

process:
state=…  
usage=…

openfiles=  
1:stdin
2:stdout
3:/foo

OS Kernel

Process

open(/bar/biz)

Disk

process:
state=…  
usage=…

openfiles=  
1:stdin
2:stdout

OS Kernel

Process

open(/bar/biz) 4

Files Descriptors in UNIX: ACL or Capability?

Disk

Memory

process:
state=…  
usage=…

openfiles=  
1:stdin
2:stdout
3:/foo
4:/bar/biz

process:
state=…  
usage=…

openfiles=  
1:stdin
2:stdout

OS Kernel

Process

write(4,data)

Files Descriptors in UNIX: ACL or Capability?

OK

Disk

Memory

process:
state=…  
usage=…

openfiles=  
1:stdin
2:stdout
3:/foo
4:/bar/biz

process:
state=…  
usage=…

openfiles=  
1:stdin
2:stdout

OS Kernel

Process

write(4,data)

Reference monitor properties?

OK

Disk

Memory

process:
state=…  
usage=…

openfiles=  
1:stdin
2:stdout
3:/foo
4:/bar/biz

process:
state=…  
usage=…

openfiles=  
1:stdin
2:stdout

Outline for Lecture 3

1. Wrap up “What is a process?”

2. Abstract approaches to access control (5.2)

3. UNIX notions of users, ownership, and permissions (5.1)

4. suid Permissions

What is “UNIX”? Why should we study it?

Ken Thompson and Dennis Ritchie, 1971

• Initially an OS developed in the 1970s by AT&T Bell Labs.

• A riff on “Multics”. UNIX was meant to be simpler and leaner.

• Philosophy of small programs with simple communication mechanisms

• Licensed to vendors who developed their own versions. “BSD” = “Berkeley Software
Distribution” may be most famous of those.

• Linux also later derived from UNIX. MacOS based on UNIX since 2000.

Why study UNIX?

1. Simple, even beautiful security design.

2. Looking at something concrete is enlightening.

3. You will almost certainly use it.

Subjects, Objects, and Verbs in UNIX (incomplete lists)

Subjects:
1. Users, identified by numbers called UIDs
2. Processes, identified by numbers called PIDs

Objects:
1. Files
2. Directories
3. Memory segments
4. Access control information (!)
5. Processes (!)
6. Users (!)

Verbs (listed by object):
1. For files and memory: Read, Write, Execute
2. For processes: Kill, debug
3. For users: Delete user, Change groups

Users, Groups, UIDs/GIDs and File Ownership

• A “user” is a sort of avatar that may or may not correspond to a person.

• Each user is identified by a number called UID that is fixed and unique.

• Each user may belong to 1 or more “groups”, each identified by number called GID.

inode:
mode=1010100…  
uid=davidcash
gid=cs232
ctime=…

All files are owned by one user and one group.

• Changed with commands chown and chgrp.

File Permissions

• Three bits for each of user, group, and other/all.
• Indicate read/write/execute permission respectively.

inode:
mode=1010100…  
uid=davidcash
gid=cs232
ctime=…

To check access:
1. If user is owner, then use owner perms.
2. If user is not owner but in group, user group perms.
3.Otherwise use “other” perms.

• Exception: Superuser (“root”) with UID=0 may bypass permissions.

ACL or
Capability?

The Root User

• “root” is the name for the administrator account

• UID = 0

• Can open/modify any file, kill any process, etc

• Rarely used as a log-in; Root’s powers are typically accessed via sudo

• Why not? (Which design principle(s) does this follow?)

Process Ownership and Permissions

• Every process has an owner; That process runs with permissions of the owner.
• fork() creates child process with same owner

Actually…. a process has three UIDs associated with it:
1. Real UID
2. Effective UID
3. Saved UID

• Why? To allow for fine-grained control over privileges via setuid() syscall.
• Implement least-privilege (P6) and isolated compartments (P5) in applications

Example: Web Servers

• Due to design of Linux, a web server must be run as root (!)
• Apache/NGINX written in C, a language in which vulnerabilities are common (next week!)

Example: Web Servers

• Due to design of Linux, a web server must be run as root (!)
• Apache/NGINX written in C, a language in which vulnerabilities are common (next week!)

Example: Web Servers

• Due to design of Linux, a web server must be run as root (!)
• Apache/NGINX written in C, a language in which vulnerabilities are common (next week!)

Example: Dropping Privileges in OpenSSH Server

sshd  
(uid=0)

Connection request

sshd  
(uid=sshd)

fork()
setuid(sshd)

<Authentication>

sshd  
(uid=user)

fork()
setuid(user)

<shell session>

(Demo)

setuid() details are complicated

… really complicated

Outline for Lecture 3

1. Wrap up “What is a process?”

2. Abstract approaches to access control (5.2)

3. UNIX notions of users, ownership, and permissions (5.1)

4. suid Permissions

suid Permission: Necessity and Danger

• Passwords stored in /etc/shadow, which is owned by root
• To change my password, I need to edit that file!
• Maybe add a syscall to kernel?

• We’d have to add a ton of syscalls… violating P8: Small Trusted Base

Solution: Special permission on a program that allows anyone to “run it as root.”
(Actually, anyone can run file with owner as uid.)

(Demo)

The End

