OS Security: Access Control and the UNIX Security Model CMSC 23200/33250, Winter 2022, Lecture 3

David Cash and Blase Ur

University of Chicago

Outline for Lecture 3

- 1. Wrap up "What is a process?"
- 2. Abstract approaches to access control (5.2)
- 3. UNIX notions of users, ownership, and permissions (5.1,5.3)
- 4. suid Permissions

Back to our diagram...

What is a process?

- One Answer: A data structure in "kernel memory", including
 - MMU configuration
 - Register values
- Kernel can load these values up, set CPL=3, and turn over control "to the process" (i.e. set EIP)
- If kernel regains control, it can save these values to swap process out

Handling Memory for a Process

EAX EBX ··· CS EBP ESP EIP
Registers
CPU
MMU

- Kernel creates a "virtual address space" for each process.
- Same virtual addresses (e.g. starting near 0) can be used by every process! They get translated to different physical addresses.
- Kernel can also mark some virtual address ranges (called segments) as "read only" or "do not execute" (EIP not allowed to point there).
- Violations are **SEGFAULT**S: MMU will take over in this case

<max>

0000...00

0000...04

0000...08

process:

state=...

usage=...

Memory

Handling Memory for a Process (cont.)

EAX EBX ··· CS EBP ESP EIP
Registers
CPU
MMU

- Kernel can also map same memory into several processes' virtual address space
- Ex: Code for malloc is not copied for every process.

Handling Memory for a Process (cont.)

System Calls: How to let processes do privileged ops

• CPU will set CPL=0 and jump to kernel handler

Outline for Lecture 3

1. Wrap up "What is a process?"

2. Abstract approaches to access control (5.2)

- 3. UNIX notions of users, ownership, and permissions (5.1,5.3)
- 4. suid Permissions

So we have a secure kernel... What now?

1. Maybe all processes should not be "created equal"?

- e.g. Should one process be able to kill another?

2. Enable different people to use same machine?

- e.g. Need to enable confidential storage of files, sharing network, ...
- 3. System calls allow for safe entry into kernel, but only make sense for low-level stuff.
 - We need a higher level to "do privileged stuff" like "change my password".

All of this will be supported by an "access control" system.

Fundamentals of Access Control: Policies

<u>Guiding philosophy:</u> Utter simplicity.

Step 1: Give a crisp definition of a **policy** to be enforced.

- 1. Define a sets of **subjects**, **objects**, and **verbs**.
- 2. A **policy** consists of a yes/no answer for every combination of subject/ object/verb.

The Access Control Matrix

- Entry in matrix is list of allowed verbs
- The matrix is not usually actually stored; It is an abstract idea.

Enforcing Policy: Reference Monitors

- 1. Tamper-proof.
- 2. Always invoked (not circumventable).
- 3. Verifiable; Simple enough to test thoroughly.
- 4. (Usually) Logs all requests.

Example Reference Monitor: The MMU

Implementing Reference Monitors: ACLs

- ACL = "access control list"
- Logically, ACL is just a column of matrix
- Usually stored with object
- Can quickly answer question: "Who can access this object?"

Examples:

- 1. VIP list at event
- 2. This class on Canvas

More?

Implementing Reference Monitors: Capabilities

- "Capability" (of a subject) is a row of matrix
- Usually stored with subject
- Can quickly answer question: "What can this subject access?"

Examples:

- 1. Movie ticket
- 2. Physical key to door lock

More?

Files Descriptors in UNIX: ACL or Capability?

Reference monitor properties?

Memory

Outline for Lecture 3

- 1. Wrap up "What is a process?"
- 2. Abstract approaches to access control (5.2)

3. UNIX notions of users, ownership, and permissions (5.1)

4. suid Permissions

What is "UNIX"? Why should we study it?

- Initially an OS developed in the 1970s by AT&T Bell Labs.
- A riff on "Multics". UNIX was meant to be simpler and leaner.
 - Philosophy of small programs with simple communication mechanisms
- Licensed to vendors who developed their own versions. "BSD" = "Berkeley Software Distribution" may be most famous of those.
- Linux also later derived from UNIX. MacOS based on UNIX since 2000.

Why study UNIX?

- 1. Simple, even beautiful security design.
- 2. Looking at something concrete is enlightening.
- 3. You will almost certainly use it.

Ken Thompson and Dennis Ritchie, 1971

Subjects, Objects, and Verbs in UNIX (incomplete lists)

Subjects:

- 1. Users, identified by numbers called UIDs
- 2. Processes, identified by numbers called PIDs

Objects:

- 1. Files
- 2. Directories
- 3. Memory segments
- 4. Access control information (!)
- 5. Processes (!)
- 6. Users (!)

Verbs (listed by object):

- 1. For files and memory: Read, Write, Execute
- 2. For processes: Kill, debug
- 3. For users: Delete user, Change groups

Users, Groups, UIDs/GIDs and File Ownership

- A "user" is a sort of avatar that may or may not correspond to a person.
- Each user is identified by a number called UID that is fixed and unique.
- Each user may belong to 1 or more "groups", each identified by number called GID.

All files are owned by one user and one group.

<u>inode:</u> mode=1010100 uid=davidcash gid=cs232 ctime=
ctime=

• Changed with commands **chown** and **chgrp**.

File Permissions

- Three bits for each of user, group, and other/all.
- Indicate read/write/execute permission respectively.

• Exception: Superuser ("root") with UID=0 may bypass permissions.

The Root User

- "root" is the name for the administrator account
- UID = 0
- Can open/modify any file, kill any process, etc
- Rarely used as a log-in; Root's powers are typically accessed via **sudo**
 - Why not? (Which design principle(s) does this follow?)

Process Ownership and Permissions

- Every process has an owner; That process runs with permissions of the owner.
- fork() creates child process with same owner

Actually.... a process has three UIDs associated with it:

- 1. Real UID
- 2. Effective UID
- 3. Saved UID
- Why? To allow for fine-grained control over privileges via **setuid()** syscall.
- Implement *least-privilege* (P6) and *isolated compartments* (P5) in applications

Example: Web Servers

- Due to design of Linux, a web server must be run as **root** (!)
- Apache/NGINX written in C, a language in which vulnerabilities are common (next week!)

Apache	e » <u>Http Ser</u>	ver : Vul	nerabilit	y Statist	ics										
Vulnerab	Vulnerabilities (232) CVSS Scores Report Browse all versions Possible matches for this product Related Metasploit Modules														
Related OVAL Definitions : Vulnerabilities (288) Patches (241) Inventory Definitions (3) Compliance Definitions (0)															
Vulnerab	Vulnerability Feeds & Widgets														
Vulnera	Vulnerability Trends Over Time														
Vullicita	Sinty Hondo		•												
Year	# of Vulnerabilities	DoS	Code Execution	Overflow	Memory Corruption	Sql Injection	xss	Directory Traversal	Http Response Splitting	Bypass something	Gain Information	Gain Privileges	CSRF	File Inclusion	# of exploits
<u>1999</u>	8	<u>3</u>	2	1											
<u>2000</u>	7		1				1								
<u>2001</u>	12	1								5	1				
<u>2002</u>	20	<u>6</u>	<u>5</u>	3			2	1			2				
<u>2003</u>	16	<u>9</u>	<u>3</u>	1							1				
<u>2004</u>	20	<u>8</u>	2	4				1		3	1	1			
<u>2005</u>	10	5	2	3			<u>3</u>			2					
<u>2006</u>	4	1	2				1			1					
<u>2007</u>	17	5	<u>3</u>				4	2		1	2	1			
<u>2008</u>	12	<u>2</u>			1		<u>6</u>		1			1	1		
<u>2009</u>	8	<u>5</u>								1		1			
<u>2010</u>	9	<u>3</u>	2	1			1				<u>3</u>				1
<u>2011</u>	12	<u>8</u>		1								1			<u>2</u>
<u>2012</u>	8	<u>4</u>		1			1				2	1			
<u>2013</u>	5	1	1				2								
<u>2014</u>	11	<u>9</u>	1	2						2	1				1
<u>2015</u>	4	2								1					
<u>2016</u>	4	2								1					
2017	11	1		1					1	1	1				
<u>2018</u>	13	<u>3</u>		1					1						
<u>2019</u>	14	1	1	2			1			2					
Total	225	<u>79</u>	<u>25</u>	21	1		22	4	3	<u>20</u>	<u>14</u>	<u>6</u>	<u>1</u>		<u>4</u>
% Of All		35.1	11.1	9.3	0.4	0.0	9.8	1.8	1.3	8.9	6.2	2.7	0.4	0.0	

Example: Web Servers

- Due to design of Linux, a web server must be run as root (!)
- Apache/NGINX written in C, a language in which vulnerabilities are common (next week!)

Vulnerability Details : <u>CVE-2004-0492</u>						
Heap-based buffer overflow in proxy_util.c for mod_proxy in Apache 1.3.25 to 1.3.31 allows remote attackers to cause a denial of service (process crash) and possibly execute arbitrary code via a negative Content-Length HTTP header field, which causes a large amount of data to be copied. Publish Date : 2004-08-06 Last Update Date : 2017-10-10						
Collapse All Expand All Select Select&Copy Scroll To Comments External Links Search Twitter Search YouTube Search Google						
- CVSS Scores & Vulnerability Types						
CVSS Score	10.0					
Confidentiality Impact	Complete (There is total information disclosure, resulting in all system files being revealed.)					
Integrity Impact	Complete (There is a total compromise of system integrity. There is a complete loss of system protection, resulting in the entire system being compromised.)					
Availability Impact	Complete (There is a total shutdown of the affected resource. The attacker can render the resource completely unavailable.)					
Access Complexity	Low (Specialized access conditions or extenuating circumstances do not exist. Very little knowledge or skill is required to exploit.)					
Authentication	Not required (Authentication is not required to exploit the vulnerability.)					
Gained Access	Admin					
Vulnerability Type(s)	Denial Of Service Execute Code Overflow					
CWE ID	CWE id is not defined for this vulnerability					
- Vendor Statements						
Fixed in Apache HTTP Server 1.3.32: http://httpd.apache.org/security/vulnerabilities_13.html Source: <u>Apache</u>						

Example: Web Servers

- Due to design of Linux, a web server must be run as **root** (!)
- Apache/NGINX written in C, a language in which vulnerabilities are common (next week!)

Nginx » Nginx : Vulnerability Statistics Vulnerabilities (26) Possible matches for this product **Related Metasploit Modules CVSS Scores Report** Browse all versions Vulnerabilities (1) Inventory Definitions (0) Compliance Definitions (0) Related OVAL Definitions : Patches (2) Vulnerability Feeds & Widgets **Vulnerability Trends Over Time** Http Memory Directory Gain File # of Code Sql Bypass Gain # of XSS CSRF DoS Overflow Response Year Vulnerabilities Execution Corruption Injection something Information Privileges Inclusion exploits Traversal Splitting 3 2 2009 1 1 1 2 3 <u>2010</u> 1 1 1 1 1 2011 1 1 2012 3 1 1 1 1 1 2 1 <u>2</u> 4 1 1 2013 2014 4 2 2 5 2016 4 1 1 2017 1 1 3 2018 26 5 Total 8 2 2 3 10 1 5 1 % Of All 38.5 19.2 30.8 3.8 0.0 0.0 7.7 0.0 7.7 19.2 3.8 0.0 0.0

Example: Dropping Privileges in OpenSSH Server

setuid() details are complicated

(a) An FSA describing setuid in Linux 2.4.18

... really complicated

(c) An FSA describing setresuid in Linux

Outline for Lecture 3

- 1. Wrap up "What is a process?"
- 2. Abstract approaches to access control (5.2)
- 3. UNIX notions of users, ownership, and permissions (5.1)
- 4. suid Permissions

suid Permission: Necessity and Danger

- Passwords stored in /etc/shadow, which is owned by root
- To change my password, I need to edit that file!
- Maybe add a syscall to kernel?
 - We'd have to add a ton of syscalls... violating P8: Small Trusted Base

Solution: Special permission on a program that allows anyone to "run it as root." (Actually, anyone can run file with owner as uid.)

The End