Memory Protection
CMSC 23200/33250, Winter 2022, Lecture 5

David Cash and Blase Ur

University of Chicago

Outline of Lecture 5: Buffer Overflow Countermeasures

1. Heap vulnerabilities (briefly)

2. Stack Protectors

3. Address-Space Layout Randomization

4. W N X and ROP

Heap Memory Vulnerabilities: Overflows

Heap Heap (after overflow)

chunk

chunk
func ptr ~.

chunk « chunk

Heap Memory Vulnerabilities: Use-after-free

Heap

chunk

chunk
func ptr ~.

chunk «

...after free

chunk

chunk «

...after reallocation

chunk

chunk

e Dangling reference to
free-ed chunk will use
wrong pointer!

e Many other heap bugs:
Double Free, corrupting
metadata...

Outline of Lecture 5: Buffer Overflow Countermeasures

1. Heap vulnerabilities (briefly)
2. Stack Protectors
3. Address-Space Layout Randomization

4. W N X and ROP

Ll

1: Stack Canaries

Countermeasure

Stack Canaries (a.k.a. Stack Protectors)

e Compiler inserts instructions to each function:

e At start of function, push a “canary” value onto stack between local variables and

saved ebp/eip

e Before returning, check if canary value is still correct; If not, ABORT.

Standard frame Frame with canary

local d

local d

saved ebp

canary

saved eip

saved ebp

arg b

saved eip

arg a

arg b

arg a

After overflow

Incorrect!
Detected

canary death handler

Where to put canaries?

StackGuard (1998) ProPolice (IBM, 2001-2005)
locals locals
saved ebp canary
canary saved ebp
saved eilip saved eilp
arg b arg b
arg a arg a

e Manipulating ebp (frame pointer) is almost as bad as eip (return address)!

How should we pick the canary value?

Null: Setto 0x00000000. Hard for attacker to copy NULLs onto stack.

Terminator: 0x000d0aff (for example.) 0x0d=CR, 0x0a=LF, 0xf£=EOF. Some buggy
code will stop at these characters.

Random: Process chooses random value at start, uses same value in every call.

Random XOR: Choose random value as above, but set canary to XOR of value and
return address (or other info).

Stack Canaries in gcc

-fno-stack-protector No Turns off protections

Adds to funcs that call alloca() & w/ arrays larger than

-fstack-protector ves 8 chars (--param=ssp-buffer-size changes 8)

Also funcs w/ any arrays & refs to local frame

-fstack-protector-strong No addresses. Introduced by ChromeOS team.

-fstack-protector-all No All funcs

e \With -fstack-protector, 2.5% of functions in kernel covered, 0.33% larger binary

e \With -fstack-protector-strong, 20.5% of functions in kernel covered, 2.4% larger
binary

Related ProPolice Feature: Rearranging Locals

e gcc puts local arrays below other locals, even it declared in other order

int foo(..) { int foo(..) {
char *p; char buf[64];
char buf[64]; VS char *p;
} }
local buf][] local *p
local buf]]
local buf[]
local *p local buf]]
canary canary
saved ebp saved ebp
saved eip saved eilip
arg b arg b
arg a arg a

Bypassing Canaries via Complex Bugs

local buf[]

local buf[]

local *p

canary

saved ebp

saved eilp

int foo(char *sl, char *s2) {
char *p;
char buf[64];

—g P = buf;

strcpy(p, sl); // oh no :(

strncpy(p, s2, 16);

arg s2

arg sl

Bypassing Canaries via Complex Bugs

int foo(char *sl, char *s2) {
char *p;
char buf[64];
p = buf;

=3 strcpy(p, sl); // oh no :(

canary

strncpy(p, s2, 16);
saved ebp

saved eip }

arg s2

arg sl

Bypassing Canaries via Complex Bugs

canary

saved ebp

arg s2

arg sl

int foo(char *sl, char *s2) {

char *p;

char buf[64];

p = buf;

strcpy(p, sl); // oh no :(

-3 strncpy(p, s2, 16);

Bypassing Canaries via “Reading the Stack”

Request that contains overflow

Child inherits same
random canary value
0xXXXYYZZWW.

Web server fork()s
child to handle request

Response or crash

local buf[]

Overflow 1 byte and observe if process crashes.
Learn XX byte after 256 tries! Repeat for rest.

local buf[]

XX YY Z2Z WW YY ZZ WW

saved ebp saved ebp

saved eip saved eip

Other Countermeasures: Shadow Stacks
Parallel Shadow Stack

local

local

canary

saved ebpl

arg

Traditional Shadow Stack

arg saved eipl

eeadl saved eip?2

local

local

local

canary

saved ebp2

e saved eip2 e Store in separate segment
to protect from overtlow.

Outline of Lecture 5: Buffer Overflow Countermeasures

1. Heap vulnerabilities (briefly)

2. Stack Protectors

3. Address-Space Layout Randomization

4. W N X and ROP

Address-Space Layout Randomization (ASLR)

Virtual Memory

- Linux PaX implementation:
e Add randomize offsets of in green areas

.text |
e 16 bits, 16 bits, 24 bits or randomness respectively
CEIEE e Makes guessing return addresses harder
.bss
- Possible attacks:
heap e Huge NOP sleds + Copy shellcode many times in
heap.
libc
e Side channels (or printf bugs) can leak random
choice
stack e Brute force with large number of forks

env

Modern machines have 64-bit addresses,
- making ASLR stronger.

Outline of Lecture 5: Buffer Overflow Countermeasures

1. Heap vulnerabilities (briefly)

2. Stack Protectors

3. Address-Space Layout Randomization

4. W A X and ROP

W A X ("Write XOR Execute”)

Virtual Memory

Cannot execute code on stack (will segfault).

r-x .text

r—- .data May mark each segment as either writeable or
executable, but never both.

r-w .bss

- e Modern hardware support: x64 (the x86 successor)

e Software implementations (PaX/ExecShield in Linux,
r-w heap DEP in Windows, ...)

r—-x libc e Slowly adopted in software since early 2000s

e Also used in virtual machine / sandboxes

Yr—-w stack

- Which of Paul van O.’s principles is this?

Bypassing W # X: Return-to-libc

r—-x

Virtual Memory

.text

W

.data

.bss

heap

libc

stack

local buf]]

local buf[]

saved ebp

saved eip

arg s2

arg sl

Bypassing W # X: Return-to-libc

Virtual Memory

r-x .text

r—-— .data

r—-w .bss

r—w heap arg sl
r-x libe *

e (Overwrite stack to prepare for a function call

e (Overwrite eip to point to function in libc

e Result: Function is called!
r—-w stack

Return-to-libc Detalls

libc
malloc()
printf ()
system()
arg s2
arg sl
(Anywhere) e Overwrite stack to prepare for a function call
e (Overwrite eip to point to function in libc
“/bin/sh"”

e Result: system(“/bin/sh"”) is called!

Going Further: Return-Oriented Programming (ROP)

e Return-to-libc enables calling functions in libc

e (Going further: Why not “return” into the middle of functions, and only execute the

end?
. Dump of assembler code for function malloc:
return-to-libc Oxb7ff2110 <+0>:push %ebx
jumps here... Oxb7ff2111 <+1>:call Oxb7ff48e9 <__x86.get_pc_thunk.bx>
Oxb7ff2116 <+6>: add $0xceea, %ebx
Oxb7ff211c <+12>: sub $0x10,%esp
Oxb7ff211f <+15>: pushl 0x18(%esp)
. Oxb7ff2123 <+19>: push $0x8
.. but we could jump Oxb7fF2125 <+21>: call Oxb7fdb810 <__libc_memalign@plts
here instead to execute Oxb7ff212a <+26>: add $0x18,%esp
two instructions, then Oxb7ff212d <+29>: pop %ebx
regain contro| Oxb7ff212e <+30>: ret

e (General ROP attack: Comb through libc for functions that end in useful instructions.
Build shellcode as a long string of returns that execute the useful instructions.

e Shown to be “Turing Complete” (Shacham 2008)

Even Crazier ROP

e (Can return into the middle of an instruction(!)

Example in libc (Shacham 2008): £7 ¢7 07 00 00 00 0f 95 45 c3

Jumo to front: £f7 ¢7 07 00 00 0O test $S0x00000007, %edi
P ' O0f 95 45 c3 setnzb -61(%ebp)
c7 07 00 00 00 Of movl $S0x0£000000, (%edi)
Jump one byte later: 95 xchg %ebp, %eax
45 inc %ebp

c3 ret

The End

