Memory Protection CMSC 23200/33250, Winter 2022, Lecture 5

David Cash and Blase Ur

University of Chicago

Outline of Lecture 5: Buffer Overflow Countermeasures

- 1. Heap vulnerabilities (briefly)
- 2. Stack Protectors
- 3. Address-Space Layout Randomization
- 4. W ^ X and ROP

Heap Memory Vulnerabilities: Overflows

Heap Memory Vulnerabilities: Use-after-free

Outline of Lecture 5: Buffer Overflow Countermeasures

1. Heap vulnerabilities (briefly)

2. Stack Protectors

- 3. Address-Space Layout Randomization
- 4. W ^ X and ROP

Countermeasure #1: Stack Canaries

Stack Canaries (a.k.a. Stack Protectors)

- Compiler inserts instructions to each function:
 - At start of function, push a "canary" value onto stack between local variables and saved ebp/eip
 - Before returning, check if canary value is still correct; If not, ABORT.

Standard frame Frame with canary

local d
saved ebp
saved eip
arg b
arg a

local d
canary
saved ebp
saved eip
arg b
arg a

Where to put canaries?

StackGuard (1998)

locals
saved ebp
canary
saved eip
arg b
arg a

ProPolice (IBM, 2001-2005)

Manipulating ebp (frame pointer) is almost as bad as eip (return address)!

How should we pick the canary value?

Null: Set to 0x0000000. Hard for attacker to copy NULLs onto stack.

Terminator: 0x000d0aff (for example.) 0x0d=CR, 0x0a=LF, 0xff=EOF. Some buggy code will stop at these characters.

Random: Process chooses random value at start, uses same value in every call.

Random XOR: Choose random value as above, but set canary to XOR of value and return address (or other info).

Stack Canaries in gcc

Flag	Default?	Notes
-fno-stack-protector	No	Turns off protections
-fstack-protector	Yes	Adds to funcs that call alloca() & w/ arrays larger than 8 chars (param=ssp-buffer-size changes 8)
-fstack-protector-strong	No	Also funcs w/ any arrays & refs to local frame addresses. Introduced by ChromeOS team.
-fstack-protector-all	No	All funcs

- With -fstack-protector, 2.5% of functions in kernel covered, 0.33% larger binary
- With -fstack-protector-strong, 20.5% of functions in kernel covered, 2.4% larger binary

Related ProPolice Feature: Rearranging Locals

gcc puts local arrays below other locals, even if declared in other order

```
int foo(...) {
   char *p;
   char buf[64];
   ...
}
```

VS

```
int foo(...) {
   char buf[64];
   char *p;
   ...
}
```

```
local buf[]

local buf[]

local buf[]

local *p

canary

saved ebp

saved eip

arg b

arg a
```

local *p
local buf[]
...
local buf[]
canary
saved ebp
saved eip
arg b
arg a

Bypassing Canaries via Complex Bugs

```
local buf[]

...
local buf[]
local *p

canary

saved ebp

saved eip

arg s2

arg s1
```

```
int foo(char *s1, char *s2) {
   char *p;
   char buf[64];
   p = buf;
   strcpy(p, s1); // oh no :(
   ...
   strncpy(p, s2, 16);
   ...
}
```

Bypassing Canaries via Complex Bugs

```
shellcode

shellcode
local *p

canary

saved ebp

saved eip

arg s2

arg s1
```

```
int foo(char *s1, char *s2) {
   char *p;
   char buf[64];
   p = buf;
   strcpy(p, s1); // oh no :(
   ...
   strncpy(p, s2, 16);
   ...
}
```

Bypassing Canaries via Complex Bugs

Bypassing Canaries via "Reading the Stack"

Child inherits same random canary value 0xXXYYZZWW.

Overflow 1 byte and observe if process crashes. Learn **xx** byte after 256 tries! Repeat for rest.

Other Countermeasures: Shadow Stacks

Parallel Shadow Stack

local

local

canary

saved ebp1

saved eip1

arg

arg

local

local

local

local

canary

saved ebp2

saved eip2

saved eip1

saved eip2

Traditional Shadow Stack

saved eip1

• Store in separate segment to protect from overflow.

Outline of Lecture 5: Buffer Overflow Countermeasures

- 1. Heap vulnerabilities (briefly)
- 2. Stack Protectors
- 3. Address-Space Layout Randomization
- 4. W ^ X and ROP

Address-Space Layout Randomization (ASLR)

Virtual Memory

Linux PaX implementation:

- Add randomize offsets of in green areas
- 16 bits, 16 bits, 24 bits or randomness respectively
- Makes guessing return addresses harder

Possible attacks:

- Huge NOP sleds + Copy shellcode many times in heap.
- Side channels (or printf bugs) can leak random choice
- Brute force with large number of forks

Modern machines have 64-bit addresses, making ASLR stronger.

Outline of Lecture 5: Buffer Overflow Countermeasures

- 1. Heap vulnerabilities (briefly)
- 2. Stack Protectors
- 3. Address-Space Layout Randomization
- 4. W ^ X and ROP

W ^ X ("Write XOR Execute")

Virtual Memory

Cannot execute code on stack (will segfault).

May mark each segment as either writeable or executable, but never both.

- Modern hardware support: x64 (the x86 successor)
- Software implementations (PaX/ExecShield in Linux, DEP in Windows, ...)
- Slowly adopted in software since early 2000s
- Also used in virtual machine / sandboxes

Which of Paul van O.'s principles is this?

Bypassing W ^ X: Return-to-libc

Bypassing W ^ X: Return-to-libc

Return-to-libc Details

Going Further: Return-Oriented Programming (ROP)

- Return-to-libc enables calling functions in libc
- Going further: Why not "return" into the middle of functions, and only execute the end?

```
Dump of assembler code for function malloc:
       return-to-libc
                                0xb7ff2110 <+0>: push
                                                        %ebx
       jumps here...
                                 0xb7ff2111 <+1>: call
                                                        0xb7ff48e9 <__x86.get_pc_thunk.bx>
                                 0xb7ff2116 <+6>: add
                                                        $0xceea, %ebx
                                 0xb7ff211c <+12>: sub
                                                           $0x10,%esp
                                                           0x18(%esp)
                                 0xb7ff211f <+15>:
                                                    pushl
                                 0xb7ff2123 <+19>:
                                                    push
                                                           $0x8
... but we could jump
                                                    call
                                                           0xb7fdb810 <__libc_memalign@plt>
                                 0xb7ff2125 <+21>:
here instead to execute
                                                    add
                                                           $0x18,%esp
                                 0xb7ff212a <+26>:
two instructions, then
                                 0xb7ff212d <+29>:
                                                           %ebx
                                                    pop
                                 0xb7ff212e <+30>:
                                                    ret
regain control
```

- General ROP attack: Comb through libc for functions that end in useful instructions.
 Build shellcode as a long string of returns that execute the useful instructions.
- Shown to be "Turing Complete" (Shacham 2008)

Even Crazier ROP

Can return into the middle of an instruction(!)

Example in libc (Shacham 2008): f7 c7 07 00 00 01 05 45 c3

```
c7 07 00 00 00 0f movl $0x0f000000, (%edi)

Jump one byte later:

45

c3

ret
```

The End