Software Security Technigues
CMSC 23200/33250, Winter 2022, Lecture 6

David Cash and Blase Ur

University of Chicago

Software security, so far this quarter

Buggy programs are common, so hardware, OS and compiler are
designed to contain damage.

1. Hardware protection: Privileged mode
2. Process isolation via virtual memory
3. Stack Protectors

4. Address-space layout randomization

5. Write-XOR-Execute

This lecture: Preventing or catching bugs earlier.

Secure Software Development

Microsoft “Secure Software Development Lifecycle” (2004-present)

e Training

e Design security requirements

e Metrics & compliance reporting
e Threat modeling

e Establish design requirements

e Define & use crypto standards

e Manage risk of third-party components
e Use approved tools

e Static analysis security testing

e Dynamic analysis security testing

e Penetration testing

¢ |[ncident response

Establish Security
Requirements

Establish Design
Requirements

Core Security
Training

Create Quality
Gates / Bug Bars

Analyze Attack
Surface

Threat
Modeling

Security & Privacy
Risk Assessment

Use Approved

Deprecate Unsafe

Incident
Response Plan

Dynamic

Tools Analysis

Fuzz
Testing

Final Security
Functions Review
Release
Archive

Attack Surface
Review

Static
Analysis

Vulnerabilitiesin 2007

mE

Windows XP SP2 Windows Vista

Secure Software Developmet «

50
Microsoft “Secure Software Development Lifed ™

20

10
e Training e Maf o

e Design security requirements e Usq

m Critical ®Important © Moderate m Low

e Metrics & compliance reporting e Sta
¢ Threat modeling e Dynamic analysis security testing
e Establish design requirements e Penetration testing

e Define & use crypto standards e Incident response

Establish Security Establish Design Use Approved Dynamic Incident
Requirements Requirements Tools Analysis Response Plan

Core Security Create Quality Analyze Attack Deprecate Unsafe Fuzz Final Security
Training Gates / Bug Bars Surface Functions Testing Review

Security & Privacy Threat Static Attack Surface Release
Risk Assessment Modeling Analysis Review Archive

Memory-Safe Languages

Many of our problems can be solved by using “memory-safe” languages.

Memory safety is the state of being protected from
various software bugs and security

vulnerabilities when dealing with memory access,
such as buffer overflows and dangling pointers.

-Wikipedia

The model of execution for such languages simply does not allow for such bugs.

C Java
C++ Python
Assembly Javascript

Rust, Go, Haskell, ...

Should be avoided if at all possible, but lots of legacy code (and low-level stuff).

https://en.wikipedia.org/wiki/Software_bugs
https://en.wikipedia.org/wiki/Vulnerability_(computing)
https://en.wikipedia.org/wiki/Vulnerability_(computing)
https://en.wikipedia.org/wiki/Random-access_memory
https://en.wikipedia.org/wiki/Buffer_overflow
https://en.wikipedia.org/wiki/Dangling_pointer

Software is Complex

All written in unsafe C/C++/Assembly

Apache HTTP Server 1.5 million 125
Apache OpenOffice 9 million 140
Linux Kernel 19 million 14,000

OpenSSL 600k 572

Example Bug: Heartbleed in OpenSSL

OpenSSL is a very widely-used library for TLS, the main security protocol on the
internet. Used in Apache, Nginx,

March 2014: Researchers discover vulnerability in “*heartbeat” implementation.

HeartbeatRequest

e Rt E——

01 | length «length» bytes | eTf 0d31.

type lerigth payload random paddmg

02 | length «length» bytes d006848

—_—ee—_—_—]

L

HeartbeatResponse

Figure 1: Heartbeat Protocol. Heartbeat requests include user
data and random padding. The receiving peer responds by echoing
back the data in the initial request along with its own padding.

Credit: [Durumeric et al 2014] O p

Cryptography and SSL/TLS Toolkit

SERVER, ARE YOU STiLL THERE?
IF 50, REPLY “POTATO" (6 LETTERS).

ser Meg wants these 6 letters: POTATO.

ser Meg wants these 6 letters: POTATO.

O
O
0

ﬁ)
]

Credit: xkcd

OERVER, ARE YOU STiLL THERE?
IF S0, REPLY "HAT" (500 LETTERS),

ﬁ/

ser Meg wants these 500 letters: HAT.

ctions" page. Eve (administrator) wan
ts to set server’s master key to "148
35038534". Isabel wants pages about "
snakes but not too long". User Karen
wants to change account password to "

\M
D)

HAT. Lucas requests the "missed conne

ser Meg wants these 500 letters: HAT.

Credit: xkcd

Heartbleed

Uses un-sanitized

int
dt1s1_process_heartbeat(SSL xs)
{
unsigned char *p = &s->s3->rrec.datal0];
unsigned char *pl;
unsigned short hbtype;
unsigned int payload;
unsigned int padding = 16; /* Use minimum padding */

[/en

/* Read type and payload length first x/
hbtype = *p++;

n2s(p, payload);

pl = p;

/] ve

unsigned charx buffer;
unsigned charx bp;

int r;

/%

* Allocate memory for the response, size is 1 byte message type, plus 2
* byte payload length, plus payload, plus padding

*/

buffer = OPENSSL_malloc(1 + 2 + payload + padding);

bp = buffer;

// "
/* Enter response type, length and copy payload x/

*bp++ = TLS_HB_RESPONSE;
s2n(playload, bp);

|ength aS ”’]pu‘t ‘to ﬁmemcpy(bp, pl, payload);

memcpy.

}

Discovery of Heartbleed

'l was doing
laborious auditing of
OpenSSL, going
through the [Secure
Sockets Layer] stack
line by line.

Date Event

0221 Neel Mehta of Google discovers Heartbleed

03/21 Google patches OpenSSL on their servers

03/31 CloudFlare is privately notified and patches

04/01 Google notifies the OpenSSL core team

04/02 Codenomicon independently discovers Heartbleed
04/03 Codenomicon informs NCSC-FI

04/04 Akamai is privately notified and patches

04/05 Codenomicon purchases the heartbleed. com domain
04/06 OpenSSL notifies several Linux distributions

04/07 NCSC-FI notifies OpenSSL core team

04/07 OpenSSL releases version 1.0.1g and a security advisory
04/07 CloudFlare and Codenomicon disclose on Twitter
04/08 Al-Bassam scans the Alexa Top 10,000

04/09 University of Michigan begins scanning

Credit: [Durumeric et al 2014]

Many Systems were Vulnerable to Heartbleed

Scripts automatically tested Alex top 1-million sites

Web Server Alexa Sites Heartbeat Ext. Vulnerable
Apache 451,270 (47.3%) 95,217 (58.4%) 28,548 (64.4%)
Nginx 182,379 (19.1%) 46,450 (28.5%) 11,185 (25.2%)
Microsoft IIS 96,259 (10.1%) 637 (0.4%) 195 (0.4%)
Litespeed 17,597 (1.8%) 6,838 (4.2%) 1,601 (3.6%)
Other 76,817 (8.1%) 5,383 (3.3%) 962 (2.2%)

Unknown 129,006 (13.5%) 8,945 (5.2%) 1,833 (4.1%)

Credit: [Durumeric et al 2014]

Many Systems were Vulnerable to Heartbleed

Site Vuln. | Site Vuln. | Site Vuln.
Google Yes | Bing No Wordpress Yes
Facebook No Pinterest Yes | Huff. Post ?
Youtube Yes | Blogspot Yes | ESPN ?
Yahoo Yes | Go.com ? Reddit Yes
Amazon No Live No Netflix Yes
Wikipedia Yes | CNN ? MSN.com No
LinkedIn No Instagram Yes | Weather.com ?
eBay No Paypal No IMDB No
Twitter No Tumblr Yes | Apple No
Craigslist ? Imgur Yes | Yelp ?

Credit: [Durumeric et al 2014]

Finding Bugs in a Binary is Even Harder

AN AN
— —

C Source Code Compiler/Linker Binary (ELF/PE)
Binary (ELF/PE) Disassembler x86 Assembly Decompiler Source Code
(gdb, IDA Pro) (IDA Pro)

Relatively simple programs like strings and hexdump can be a start.

But binary analysis is often used for reverse engineering and malware analysis.

Disassembly/Decompiling Can Find Bugs

Dump of assembler code for function main:
0x0804843b <+0>: lea Ox4(%esp) ,%ecx
0x0804843f <+4>: and $OXFffffffo,%esp
0x08048442 <+7>: pushl -0x4(%ecx)
0x08048445 <+10>: push %ebp
0x08048446 <+11>: mov %esp ,%ebp
0x08048448 <+13>: push %ecx
0x08048449 <+14>: sub $0x14,%esp
0x0804844c <+17>: sub $0xc,%esp
0x0804844f <+20@>: push $0x40
Ox08048451 <+22>: call 0Ox8048310 <malloc@plt>
0x08048456 <+27>: add $0x10,%esp
0x08048459 <+30>: mov %eax , -0xc(%ebp)
0x0804845¢c <+33>: sub $0xc,%esp
0x0804845f <+36>: pushl -0xc(%ebp)
0x08048462 <+39>: call 0Ox8048300 <free@plt>
0x08048467 <+44>: add $0x10,%esp
0x0804846a <+47>: sub $0xc,%esp
0x0804846d <+50>: pushl -0xc(%ebp)
0x08048470 <+53>: call 0Ox8048300 <free@plt>
0x08048475 <+58>: add $0x10,%esp
0x08048478 <+61>: mov $0x0, %eax
0x0804847d <+66>: mov -0x4(%ebp) , %ecx
0x08048480 <+69>: leave
0x08048481 <+70>: lea -0x4(%ecx) ,%esp
Ox08048484 <+73>: ret

End of assembler dump.

Techniques for Bug Finding with Source

1. Manual Analysis
- Source review
- Reverse engineering

2. Automated Program Analysis
- Static Analysis

- Dynamic Analysis (Testing)

Source Code Analyzers

A

Source Code

k 1 Memory leak 125
2 Buffer overflow 386

_> 3 Use-after-free 776

4 Info leak 432

5 Unsanitized input 321

Program Analysis
Tool

Test Cases

False Positives and Negatives in Program Analysis

Term Definition

False positive Spurious warning when there is no vulnerability

False negative Lack of warning when for actual vulnerability

Term Definition

Complete Analysis No false negatives

Sound Analysis No false positives

Complete and Sound Analysis?

Rice’s Theorem from Computability Theory (informal): Any non-trivial behavioral
property of a programs’ behavior is undecidable.

Examples: Given a program P, will it...

e Always give correct output?
e Go into an infinite loop?
e Segfault?

e | ecak memory?

(Iechnical disclaimers: Rice's theorem only applies to “programs” with unbounded
memory, and not to the ones in our computers, strictly speaking. Nonetheless the
conclusion is still true in practice.)

May be possible to check those properties for simple programs, however!

Typical Tools/Approaches

Approach

Type

Comment

Perform syntactic checks

Lexical analyzer Static

Ex: grep, LINT, RATS, 1TS54

Run program on many possibly-malformed inputs.
Fuzzing Dynamic

Ex: AFL/libfuzzer, Grizzly, Taof,

Add correctness checks to binary by simulating in

L . . VM, replacing standard libraries.

Run-time instrumentation Dynamic

Ex: Valgrind/Memcheck

Compile-time instrumentation Static/Dynamic

Insert checks into binary during compilation.

Ex: {Address, Thread,UndefinedBehavior}Sanitizer

Abstract behavior of program then algebraically
solve for buggy inputs.

Symbolic Execution Static/Dynamic

Ex: KLEE, S2E, FiE

Define a specification, abstract program to model,
Model Checking Static then formally verify correctness.

Ex: MOPS, SLAM, ...

Lexical Analysis: Source Code Scanners

e grep (i.e. simply search) for “strcpy” to find use of unsafe code.
e 1lint searches for problematic code features

e RATS/ITS4: more modern versions of this approach.

- Some array out-of-bounds errors

— Ignoring return values

- Variables that can be static but aren't
- Unsanitized integer/string inputs

- Missing optional args (e.g. in open())

Compile-Time Instrumentation: AddressSanitizer (ASan)

-fsanitize=address option in gcc will insert numerous checks to binary

Ex: Rewrite mallocs to ask for extra memory, then mark bytes before/after as
“redzone”. Touching those indicates error.

Before: void foo() {
char al[8];
*address = ...; // or: ... = *xaddress; T
return,;
}
After:

Instrumented code:
if (IsPoisoned(address)) {

ReportError(address, kAccessSize, kIsWrite);

} void foo() {
*address = ...; // or: ... = xaddress; char redzonel[32]; // 32-byte aligned
char a[8]; // 32-byte aligned

char redzone2[24];

char redzone3[32]; // 32-byte aligned

int xshadow_base = MemToShadow(redzonel);

shadow_base[0] oxffffffff; // poison redzonel
shadow_base[1] = oxffffffe@; // poison redzone2, unpoison 'a'
shadow_base[2] oxffffffff; // poison redzone3

shadow_base[0]
return;

}

shadow_base[1] = shadow_base[2] = @; // unpoison all

Source: https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm
(Demo)

Dynamic Analysis: Valgrind

Valgrind/Memcheck will rewrite a binary with many checks for memory errors.

Does not catch as much as ASAN, general. For example stack bugs get through:

// RUN: clang -0 —g —-fsanitize=address %t && ./a.out
int main(int argc, char sxargv) A{

int stack_array[100];

stack_array[l] = 0;

return stack_arraylargc + 100]; // out of bounds

}

Source: https://github.com/google/sanitizers/wiki/AddressSanitizerExampleStackOutOfBounds

(Demo)

Program Fuzzing

Run program on huge number of automatically-generated inputs, searching for
crashes.

Linux Mint fixes screensaver bypass
discovered by two kids

Two children playing on their dad's computer accidentally found a way to bypass the screensaver and access locked
systems.

MORE FROM CATALIN CIMPANU

. By Catalin Cimpanu for Zero Day | January 15, 2021 -- 18:28 GMT
@ in d f v & @

. . Security
10:28 PST) | T :S t
() | Topic: Security m"' Hacker leaks data of

"A few weeks ago, my kids wanted to hack my Linux desktop, so they typed
and clicked everywhere while | was standing behind them looking at them
play," wrote a user identifying themselves as robo2bobo.

According to the bug report, the two kids pressed random keys on both the
physical and on-screen keyboards, which eventually led to a crash of the Linux
Mint screensaver, allowing the two access to the desktop.

"l thought it was a unique incident, but they managed to do it a second time,”
the user added.

Types of Fuzzing

Mutation-based (dumb): Take an initial set of examples and make random changes to
them.

- Millions of inputs (can just run forever)
- Possibly lower quality, unable to find certain types of inputs

Generative (smart): Describe inputs to fit format/protocol, then generate inputs from that
grammar with changes.

- Run with fewer inputs, which can be directed to certain types

int func(char xs) {
if(check _sum_is valid(s)) {
complicated_func(s);
s
else {
simple_func(s);

Q: Which is better for func()?

Q: Which is better for heart bleed? F
}

Problems with Fuzzing

Mutation-based (dumb): How long to run” And we need a strong server.

Generative (smart): Run out test cases. A lot more work.

General problems:
— Need to identify when bug/crash occurs automatically.

— Don’t want to report same bug 1000s of times.

Fuzzing and Code Coverage

Testing heuristic: The more of the code that is executed by tests, the more likely we are
to find bugs.

Can try to cover:
- Lines/instructions of source/binary
- Branches in binary/source

- Paths in binary/source

Example: HIRTLCILENRGEOR

return a+b;

}

A Notable Example: Dumb Mutation Fuzzing of PDFs

Charlie Miller, 2010:
1. Download 1000s of PDFs from internet

2.For each one, change some bytes literally at random.

numwrites = random.randrange(math.ceil((float(len(buf)) / FuzzFactor))) + 1
for j in range(numwrites):

rbyte = random.randrange(256)

rn = random.randrange(len(buf))

buf[rn] = “%c"%(rbyte)

Results:

Apple Preview: 250 unique crashes, 60 exploits

Acrobat: 100 unigue crashes, 4 exploits

Slide credit: https://cs155.stanford.edu/lectures/06-testing. pdf

American Fuzzy Loop (AFL)

Popular, impactful project by Google.
Easy to set up with seed examples for mutation-based fuzzing.

Can instrument code for fast execution.

american fuzzy lop 0.47b (readpng)

o~ ' : : ' imi 11 1
Deterministic bit-flipping, Process un time 0 days, 0 hrs, 4 min, 43 sec "?S“V‘"‘;S
. » ays, 'S, min, secC :
randomized stacked transforms. , Bome el Yo | min. 51 sec 0
cycle progress map coverage
e B -+ ol ‘ 3L R
. . . . 1TSS u e
Pv4€36153 tkw Cj stage progress findings in depth P
ures path coverage an . 079950 £0-00%) ‘ e L 85 (43590
favors increasing coverage Ak : 0 €0 umrique)
' - 2306/sec - 1 (1 unique)

fuzzing strategy yields path geometry
' ' - 88/14.4k, 6/14.4k, 6/14.4k - 3
- 0/1804, 0/1786, 1/1750 - 178
- 31/126k, 3/45.6k, 1/17.8k - 114
- 1/15.8k, 4/65.8k, 6/78.2k ’ :
- 34/254k, 0/0
- 2876 B/931 (61.45% gain)

AFL Fuzz and File Formats

$ mkdir in dir
S echo 'hello' >in dir/hello
$./afl-fuzz -i in dir -o out dir ./jpeg-9a/djpeg

i —urumrr ,—' ! m e == e | = |‘—| -

e TP =R, W?VTWWﬂﬂW

‘—"13—'!‘"—7f'—‘I_'”l”'"'"fr"-?f'_'lr—'!‘*_""—'!”—"l|'_‘

R— [S——

TTFﬁﬁTh*Wmﬁﬁﬁ—_hﬁﬁﬁﬁ

]

ﬁ***EEMﬁwmﬁms*—H*fﬁ

H'Hi—l‘_]———'r—ll_—'irfv*‘—!"—l"ﬂ"t—ﬂ_’_'T‘_—" | | (|
tf"‘ l\

'—’V'—F_"T_“F_ir—'.ﬁr_-l'—l”——l'—i.'—'_‘””‘_‘r—r—-"r_'i'_'[_T

: _._;__‘ ,__ ,__'._ H ’_.‘ ‘mans | mam ;—~—-~; F-r-r-' '*I'—I r—] - "‘;" r—" ’-—-‘ 1 s Y-—"1 m—

Automatically discovered well-formed jpeg format by exploring code!

https://lcamtuf.blogspot.com/2014/11/pulling-jpegs-out-of-thin-air.ntml

Fuzzing in Production

Google/Microsoft constantly fuzz products with dedicated servers/VMS.

Anecdote: Found 95 vulnerabilities in Chrome during 2011.

OneFuzz

A self-hosted Fuzzing-As-A-Service platform

Project OneFuzz enables continuous developer-driven fuzzing to proactively harden
software prior to release. With a single command, which can be baked into CICD,
developers can launch fuzz jobs from a few virtual machines to thousands of cores.

The bug-o-rama trophy case

Yeah, it finds bugs. I am focusing chiefly on development and have not been running the
fuzzer at a scale, but here are some of the notable vulnerabilities and other uniquely
interesting bugs that are attributable to AFL (in large part thanks to the work done by other

users):

IJG jpeg?
libtiff1 2345
Mozilla Firefox 123 4

Adobe Flash / PCRE
1234567

LibreOffice 1 23 4
GnuTLS?
PuTTY 12

bash (post-
Shellshock) £ 2

pdfium 12

libarchive 123456 -

BIND 123 -

Oracle BerkeleyDB 1
2

FLAC audio library 1
2

strings (+ related

1T N 19909 ArccA™

libjpeg-turbo 1 2
mozjpeg 1

Internet Explorer 123 4

sqlite 1 2 3 4.

GnuPG1234

ntpdlg

tcpdumplg3é‘:5§7_§9.

ffmpeg 12345

wireshark 123

QEMU 12
Android / libstagefright
12

libsndfile 2123 4

file1234

libpng 1

PHP12345678

Apple Safari X

OpenSSL1234567

freetype 1 2
OpenSSH 12345

nginx123

JavaScriptCore 123 4

libmatroska 1

ImageMagick 123456
789

lems 1

iOS / ImagelO !

less / lesspipe 123

dpke 12

Symbolic Execution

¢ |nstead of actually running program, track variables as abstract symbols.
e Emulate running program, adding constraints on variables.

e Check algebraically for a solution to assign values and cause crash.

Pros: Get an automated proof that code is correct.

Cons: Usually only works on small pieces of code. State space explodes exponentially.

e Solve if there exists input Y causing crash.

Slide credit: https://cs155.stanford.edu/lectures/O6-testing.pdf

The End

