
David Cash and Blase Ur

Software Security Techniques

CMSC 23200/33250, Winter 2022, Lecture 6

University of Chicago

Software security, so far this quarter

1. Hardware protection: Privileged mode

2. Process isolation via virtual memory

3. Stack Protectors

4. Address-space layout randomization

5. Write-XOR-Execute

Buggy programs are common, so hardware, OS and compiler are
designed to contain damage.

This lecture: Preventing or catching bugs earlier.

Secure Software Development

• Training

• Design security requirements

• Metrics & compliance reporting

• Threat modeling

• Establish design requirements

• Define & use crypto standards

• Manage risk of third-party components

• Use approved tools

• Static analysis security testing

• Dynamic analysis security testing

• Penetration testing

• Incident response

Microsoft “Secure Software Development Lifecycle” (2004-present)

Secure Software Development

• Training

• Design security requirements

• Metrics & compliance reporting

• Threat modeling

• Establish design requirements

• Define & use crypto standards

• Manage risk of third-party components

• Use approved tools

• Static analysis security testing

• Dynamic analysis security testing

• Penetration testing

• Incident response

Microsoft “Secure Software Development Lifecycle” (2004-present)

Memory-Safe Languages

Many of our problems can be solved by using “memory-safe” languages.

Memory safety is the state of being protected from
various software bugs and security
vulnerabilities when dealing with memory access,
such as buffer overflows and dangling pointers.

-Wikipedia

The model of execution for such languages simply does not allow for such bugs.

Not Memory-Safe Memory Safe

C Java

C++ Python

Assembly Javascript

Rust, Go, Haskell, …

Should be avoided if at all possible, but lots of legacy code (and low-level stuff).

https://en.wikipedia.org/wiki/Software_bugs
https://en.wikipedia.org/wiki/Vulnerability_(computing)
https://en.wikipedia.org/wiki/Vulnerability_(computing)
https://en.wikipedia.org/wiki/Random-access_memory
https://en.wikipedia.org/wiki/Buffer_overflow
https://en.wikipedia.org/wiki/Dangling_pointer

Software is Complex

Project Lines of Code No. Contributors

Apache HTTP Server 1.5 million 125

Apache OpenOffice 9 million 140

Linux Kernel 19 million 14,000

OpenSSL 600k 572

All written in unsafe C/C++/Assembly

Example Bug: Heartbleed in OpenSSL

OpenSSL is a very widely-used library for TLS, the main security protocol on the
internet. Used in Apache, Nginx, …

March 2014: Researchers discover vulnerability in “heartbeat” implementation.

Credit: [Durumeric et al 2014]

Credit: xkcd

Credit: xkcd

Heartbleed

Uses un-sanitized  
length as input to 
memcpy.

Discovery of Heartbleed

Credit: [Durumeric et al 2014]

"I was doing
laborious auditing of

OpenSSL, going
through the [Secure
Sockets Layer] stack

line by line.

Many Systems were Vulnerable to Heartbleed

Credit: [Durumeric et al 2014]

Scripts automatically tested Alex top 1-million sites

Many Systems were Vulnerable to Heartbleed

Credit: [Durumeric et al 2014]

Finding Bugs in a Binary is Even Harder

Compiler/LinkerC Source Code Binary (ELF/PE)

Disassembler 
(gdb, IDA Pro)

Source CodeBinary (ELF/PE) x86 Assembly Decompiler 
 (IDA Pro)

Relatively simple programs like strings and hexdump can be a start.

But binary analysis is often used for reverse engineering and malware analysis.

Disassembly/Decompiling Can Find Bugs

Dump of assembler code for function main:
 0x0804843b <+0>: lea 0x4(%esp),%ecx
 0x0804843f <+4>: and $0xfffffff0,%esp
 0x08048442 <+7>: pushl -0x4(%ecx)
 0x08048445 <+10>: push %ebp
 0x08048446 <+11>: mov %esp,%ebp
 0x08048448 <+13>: push %ecx
=> 0x08048449 <+14>: sub $0x14,%esp
 0x0804844c <+17>: sub $0xc,%esp
 0x0804844f <+20>: push $0x40
 0x08048451 <+22>: call 0x8048310 <malloc@plt>
 0x08048456 <+27>: add $0x10,%esp
 0x08048459 <+30>: mov %eax,-0xc(%ebp)
 0x0804845c <+33>: sub $0xc,%esp
 0x0804845f <+36>: pushl -0xc(%ebp)
 0x08048462 <+39>: call 0x8048300 <free@plt>
 0x08048467 <+44>: add $0x10,%esp
 0x0804846a <+47>: sub $0xc,%esp
 0x0804846d <+50>: pushl -0xc(%ebp)
 0x08048470 <+53>: call 0x8048300 <free@plt>
 0x08048475 <+58>: add $0x10,%esp
 0x08048478 <+61>: mov $0x0,%eax
 0x0804847d <+66>: mov -0x4(%ebp),%ecx
 0x08048480 <+69>: leave
 0x08048481 <+70>: lea -0x4(%ecx),%esp
 0x08048484 <+73>: ret
End of assembler dump.

Techniques for Bug Finding with Source

1. Manual Analysis

- Source review

- Reverse engineering

2. Automated Program Analysis

- Static Analysis

- Dynamic Analysis (Testing)

Source Code Analyzers

Program Analysis 
Tool

Source Code

Spec

Test Cases

Report No. Type Line/test

1 Memory leak 125

2 Buffer overflow 386

3 Use-after-free 776

4 Info leak 432

5 Unsanitized input 321

… … …

False Positives and Negatives in Program Analysis

Term Definition

False positive Spurious warning when there is no vulnerability

False negative Lack of warning when for actual vulnerability

Term Definition

Complete Analysis No false negatives

Sound Analysis No false positives

Complete and Sound Analysis?

Rice’s Theorem from Computability Theory (informal): Any non-trivial behavioral
property of a programs’ behavior is undecidable.

Examples: Given a program P, will it…

• Always give correct output?

• Go into an infinite loop?

• Segfault?

• Leak memory?

• …

(Technical disclaimers: Rice’s theorem only applies to “programs” with unbounded
memory, and not to the ones in our computers, strictly speaking. Nonetheless the
conclusion is still true in practice.)

May be possible to check those properties for simple programs, however!

Typical Tools/Approaches

Approach Type Comment

Lexical analyzer Static
Perform syntactic checks 

Ex: grep, LINT, RATS, ITS4

Fuzzing Dynamic
Run program on many possibly-malformed inputs. 
 
Ex: AFL/libfuzzer, Grizzly, Taof,

Run-time instrumentation Dynamic

Add correctness checks to binary by simulating in
VM, replacing standard libraries. 
 
Ex: Valgrind/Memcheck

Compile-time instrumentation Static/Dynamic
Insert checks into binary during compilation. 
 
Ex: {Address,Thread,UndefinedBehavior}Sanitizer

Symbolic Execution Static/Dynamic

Abstract behavior of program then algebraically
solve for buggy inputs. 
 
Ex: KLEE, S2E, FiE

Model Checking Static

Define a specification, abstract program to model,
then formally verify correctness. 
 
Ex: MOPS, SLAM, …

Lexical Analysis: Source Code Scanners

• grep (i.e. simply search) for “strcpy” to find use of unsafe code.

• lint searches for problematic code features

• RATS/ITS4: more modern versions of this approach.

- Some array out-of-bounds errors

- Ignoring return values

- Variables that can be static but aren’t

-Unsanitized integer/string inputs

-Missing optional args (e.g. in open())

-…

Compile-Time Instrumentation: AddressSanitizer (ASan)

-fsanitize=address option in gcc will insert numerous checks to binary

Ex: Rewrite mallocs to ask for extra memory, then mark bytes before/after as
“redzone”. Touching those indicates error.

Source: https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm
(Demo)

Dynamic Analysis: Valgrind

Valgrind/Memcheck will rewrite a binary with many checks for memory errors.

(Demo)
Source: https://github.com/google/sanitizers/wiki/AddressSanitizerExampleStackOutOfBounds

// RUN: clang -O -g -fsanitize=address %t && ./a.out

int main(int argc, char **argv) {

 int stack_array[100];

 stack_array[1] = 0;

 return stack_array[argc + 100]; // out of bounds

}

Does not catch as much as ASAN, general. For example stack bugs get through:

Program Fuzzing

Run program on huge number of automatically-generated inputs, searching for
crashes.

"A few weeks ago, my kids wanted to hack my Linux desktop, so they typed
and clicked everywhere while I was standing behind them looking at them
play," wrote a user identifying themselves as robo2bobo.

According to the bug report, the two kids pressed random keys on both the
physical and on-screen keyboards, which eventually led to a crash of the Linux
Mint screensaver, allowing the two access to the desktop.

"I thought it was a unique incident, but they managed to do it a second time,"
the user added.

Types of Fuzzing

Mutation-based (dumb): Take an initial set of examples and make random changes to
them.

- Millions of inputs (can just run forever)

- Possibly lower quality, unable to find certain types of inputs

Generative (smart): Describe inputs to fit format/protocol, then generate inputs from that
grammar with changes.

- Run with fewer inputs, which can be directed to certain types

int func(char *s) {

 if(check_sum_is_valid(s)) {

complicated_func(s);

}

 else {

simple_func(s);

}

}

Q: Which is better for func()?

Q: Which is better for heart bleed?

Problems with Fuzzing

Mutation-based (dumb): How long to run? And we need a strong server.

Generative (smart): Run out test cases. A lot more work.

General problems:

 — Need to identify when bug/crash occurs automatically.

 — Don’t want to report same bug 1000s of times.

Fuzzing and Code Coverage

Testing heuristic: The more of the code that is executed by tests, the more likely we are
to find bugs.

Can try to cover:

- Lines/instructions of source/binary

- Branches in binary/source

- Paths in binary/source

int func(int a, int b) {
if(a > 2)
 a = 2;
if(b > 2)
 b = 2;
return a+b;

}

Example:

A Notable Example: Dumb Mutation Fuzzing of PDFs

Charlie Miller, 2010:

1. Download 1000s of PDFs from internet

2. For each one, change some bytes literally at random.

numwrites = random.randrange(math.ceil((float(len(buf)) / FuzzFactor))) + 1
for j in range(numwrites):
rbyte = random.randrange(256)
rn = random.randrange(len(buf))
buf[rn] = “%c"%(rbyte)

Slide credit: https://cs155.stanford.edu/lectures/06-testing.pdf

Results:

Apple Preview: 250 unique crashes, 60 exploits

Acrobat: 100 unique crashes, 4 exploits

American Fuzzy Loop (AFL)

Popular, impactful project by Google.

Easy to set up with seed examples for mutation-based fuzzing.

Can instrument code for fast execution.

Deterministic bit-flipping, 
randomized stacked transforms.

Measures path coverage and
favors increasing coverage.

AFL Fuzz and File Formats

$ mkdir in_dir
$ echo 'hello' >in_dir/hello
$./afl-fuzz -i in_dir -o out_dir ./jpeg-9a/djpeg

https://lcamtuf.blogspot.com/2014/11/pulling-jpegs-out-of-thin-air.html

Automatically discovered well-formed jpeg format by exploring code!

Fuzzing in Production

Google/Microsoft constantly fuzz products with dedicated servers/VMS.

Anecdote: Found 95 vulnerabilities in Chrome during 2011.

Symbolic Execution

• Instead of actually running program, track variables as abstract symbols.

• Emulate running program, adding constraints on variables.

• Check algebraically for a solution to assign values and cause crash.

Pros: Get an automated proof that code is correct.

Cons: Usually only works on small pieces of code. State space explodes exponentially.

X = 0

Is Y=0?

Crash

X←X+1 X←X-1

Is Y=0?

Is X>0? Exit

Slide credit: https://cs155.stanford.edu/lectures/06-testing.pdf

yes no

yes no

yes no

• Solve if there exists input Y causing crash.

The End

