
David Cash & Blase Ur

Cryptography Part 1

CMSC 23200/33250, Winter 2022, Lecture 7

University of Chicago

What is Cryptography?

Cryptography involves algorithms with security goals.

Cryptography involves using math to stop adversaries.

Common Security Goal: Secure Channel

Client Server

Secure channel

m1

m′￼2
m′￼1

m2

Confidentiality: Adversary does not learn anything about messages m1, m2

Authenticity: andm′￼1 = m1 m′￼2 = m2

Crypto in CS23200/33250

- A brief overview of major concepts and tools

- Cover (some of) big “gotchas” in crypto deployments

- Cover background for networking and authentication later 

 
Not going to cover math, proofs, or many details. 
Consider taking CS284 (Cryptography)!

Four settings for cryptography

Confidentiality Authenticity/Integrity

Yes

(“Symmetric”)

Symmetric Encryption 
(aka Secret-key

Encryption)

Message
Authentication Code

(MAC)

No

(“Asymmetric”) Public-Key Encryption Digital Signatures

Security 
Goal

Pre-shared 
key?

Rest of this lecture

- Symmetric Encryption Basics

- Stream Ciphers

Rest of this lecture

- Symmetric Encryption Basics
- Stream Ciphers

Encrypt DecryptC

Ciphers (a.k.a. Symmetric Encryption)

K
m m/ ⊥

K

A cipher is a pair of algorithms Encrypt, Decrypt:

Require that decryption recovers the same message.

Historical Cipher: ROT13 (“Caesar cipher”)

Plaintext: DEFGH

Key (shift): 3

Ciphertext: FGHKL

Encrypt(K,m): shift each letter of plaintext forward by K
positions in alphabet (wrap from Z to A).

Plaintext: ATTACKATDAWN

Key (shift): 13

Ciphertext: NGGNPXNGQNJA

Historical Cipher: Substitution Cipher

Encrypt(K,m): Parse key K as a permutation π on {A,… Z}.
Apply π to each character of m.

P: ATTACKATDAWN

K: π

C: ZKKZAMZKYZGT

x π(x)
A Z
B U
C A
D Y
E R
F E
G X
H B
I D
J C
K M
L Q
M H
N T
O I
P S
Q V
R N
S P
T K
U O
V F
W G
X W
Y L
Z J

How many keys?

26! ≈ 288

9 million years to try all keys at rate of
1 trillion/sec

Cryptanalysis of Substitution Cipher

Quick recall: Bitwise-XOR operation

We will use bit-wise XOR:
0101

1100⨁

1001

Some Properties:

• X⨁Y = Y⨁X
• X⨁X = 000…0
• X⨁Y⨁X = Y

Cipher Example: One-Time Pad

Key K: Bitstring of length L

Plaintext M: Bitstring of length L

Encrypt(K,M): Output K⨁M Example:
0101

1100⨁

1001Decrypt(K,C): Output K⨁C

Correctly decrypts because
K⨁C = K⨁(K⨁M) = (K⨁K)⨁M = M

Q: Is the one-time pad secure?
Bigger Q: What does “secure” even mean?

Evaluating Security of Crypto Algorithms

Kerckhoff’s Principle: Assume adversary knows your
algorithms and implementation. The only thing it
doesn’t know is the key.

1. Quantify adversary goals

Learn something about plaintext? Spoof a message?

2. Quantify adversary capabilities

View ciphertexts? Probe system with chosen inputs?

3. Quantify computational resources available to adversary

Compute cycles? Memory?

Breaking Encryption - A Basic Game

C1, …, CqK
m1, …, mq m/ ⊥

K

Ciphertext-only attack: The adversary sees ciphertexts and
attempts to recover some useful information about plaintexts.

More attack settings later.

Recovering Partial Information; Partial Knowledge

- Recovering entire messages is useful

- But recovering partial information is also be useful

- Attacker may know large parts of plaintext already (e.g.
formatting strings or application content). The attacker tries to
obtain something it doesn’t already know. 
 M = http://site.com?password=▮▮▮▮▮▮▮▮

A lot of information is

missing here. 
 
But can we say who this is?

“Attacks” versus “Security”

An attack is successful as long as it recovers some info
about plaintext that is useful to adversary.

Encryption should hide all possible partial information about
plaintexts, since what is useful is situation-dependent.

Attacks can succeed without recovering the key

C1, …, CqK
m1, …, mq m/ ⊥

K

Full break: Adversary recovers K, decrypts all ciphertexts.

However: Clever attacker may compromise encryption
without recovering the key.

Security of One-Time Pad

Claim: If adversary sees only one ciphertext under a
random key, then any plaintext is equally likely, so it
cannot recover any partial information besides plaintext
length.

Ciphertext observed:

Possible plaintext:

⇒ Possible key:

10111
00101
10010

1. Adversary goal: Learn partial information from plaintext

2. Adversary capability: Observe a single ciphertext

3. Adversary compute resources: Unlimited time/memory (!)

Issues with One-Time Pad

1. Reusing a pad is insecure

2. One-Time Pad is malleable

3. One-Time Pad has a long key

Issue #1: Reusing a One-Time Pad is Insecure

HELLOALICE

Pad

C1

⨁

=

PWDHAMSTER

Pad

C2

⨁

=

HELLOALICE Pad

⨁

PWDHAMSTER

=

⨁

=
Pad

Issue #1: Reusing a One-Time Pad is Insecure

S3CR3T1234

Pad

C1

⨁

=

3L33THXRRR

Pad

C2

⨁

=

C1 ⨁ C2

= S3CR3T1234 3L33THXRRR⨁

Has led to real attacks:

- Project Venona (1940s) attack by US on Soviet encryption

- MS Windows NT protocol PPTP

- WEP (old WiFi encryption protocol)

- Fortiguard routers! [link]

https://seclists.org/bugtraq/2019/Nov/38

Issue #2: One-Time Pad is Malleable

PAYALICE$1

Pad

C

⨁

=

=
C’

⨁

000ALICE00

000DAVID00

⨁

Decrypt(Pad, C’) = PAYDAVID$1

Issue #3: One-Time Pad Needs a Long Key

Can prove: Any cipher as secure as the OTP must have:

Key-length ≥ Plaintext-length

In practice:

- Use stream cipher: Encrypt(K,m) = G(K)⊕m

- Add authentication tag

- Use nonces to encrypt multiple messages

Outline

- Symmetric Encryption Basics

- Stream Ciphers
- Block Ciphers

Tool to address key-length of OTP: Stream Ciphers

Stream cipher syntax: Algorithm G that takes one input
and produces an very long bit-string as output.

1100..11

11111010001000111010100101000101100100111100…

G

⨁ DONUTSDONUTSDONUTSDONUTSDONUTSDONUTSDONUTSDON

Use G(seed) in place of pad.

Still malleable and still one-time, but key is shorter.

Typically 16 or 32 bytes.Usually very, very large 
(petabytes if needed)

Key/Seed k:

G(k):

Stream Cipher Security Goal (Sketch)

Security goal: When k is random and unknown, G(k)
should “look” random.

… even to an adversary spending a lot of computation. 
 
Much stronger requirement that “passes statistical tests”.

Brute force attack: Given y=G(k), try all possible k and
see if you get the string y.

Clarified goal: When k is random and unknown, G(k)
should “look” random to anyone with less computational
power needed for a brute force attack.

(keylength = 256 is considered strong now)

Aside: Fundamental Physical Property of the Universe*

There exist (1-to-1) functions (say on bitstrings) that are:

 1) Very fast to evaluate

 2) Computationally infeasible to reverse

The disparity can be almost arbitrarily large!

Evaluating y = f(x) may only take a few cycles….

… and finding x from y within the lifetime of the universe 
may not be possible, even with a computer made up of 
every particle in the universe.

*conjectured, but unproven property

Computational Strength

Steps Who can do that many?
256 Strong computer with GPUs
280 All computers on Bitcoin network in 4.5 hours
2128 Very large quantum computer? (Ask Diana,Fred,Bill,Robert)*
2192 Nobody?
2256 Nobody?

*Not directly comparable but this is an estimate of equivalent power. 
Quantum computers are most effective against public-key crypto, but they  
also speed up attacks on symmeric-key crypto. (More next time.)

Practical Stream Ciphers

RC4 (1987): “Ron’s Cipher #4”. Mostly retired by 2016.

ChaCha20 (2007): Successfully deployed replacement. 
Supports nonces.

Pad reuse can still happen with stream ciphers

m1

⨁ G(k)

k

k

ciphertext

…

m2

⨁

ciphertext

G(k)

Addressing pad reuse: Stream cipher with a nonce

- “nonce” = “number once”.

- Usually denoted IV = “initialization vector”

Stream cipher with a nonce: Algorithm G that takes two
inputs and produces a very long bit-string as output.

1100..11

11111010001000111010100101000101100100111100…

1100..11

Key/Seed k:Nonce IV:

G(IV,k):

Security goal: When k is random and unknown, G(IV,k) should
“look” random and independent for each value of IV.

Solution 1: Stream cipher with a nonce

m1

⨁ G(IV,k)

k

k

ciphertext

IV←0

IV

IV←IV+1

…

m2

⨁

ciphertext

G(IV,k)

IV

- If nonce repeats, then pad repeats

Example of Pad Re-use: WEP Warning: Broken

IEEE 802.11b WEP: WiFi security standard ’97-‘03

IV

IV is 24-bit wide counter

- Repeats after 224 frames (≈16 million)

- IV is often set to zero on power cycle

Solutions: (WPA2 replacement)

- Larger IV space, or force rekeying more often

- Set IV to combination of packet number, address, etc

Example of Pad Re-use: WEP Warning: Broken

IEEE 802.11b WEP: WiFi security standard ’97-‘03

IV

IV is 24-bit wide counter

- Repeats after 224 frames (≈16 million)

- Often set to zero on reset

Solutions: (WPA2 replacement)

- Larger IV space, or force rekeying more often

- Set IV to combination of packet number, address, etc

Issues with One-Time Pad

1. Reusing a pad is insecure

2. One-Time Pad is malleable

3. One-Time Pad has a long key

Use unique nonces

Use stream cipher with short key

More difficult to address; We will return to this later.

Rest of this lecture

- Symmetric Encryption Basics

- Stream Ciphers

The End

