9. Authentication Part 1

Blase Ur and David Cash January 31st, 2022 CMSC 23200 / 33250

Who Am I?

- David Cash
 - Distinguished cryptographer
 - Fan of rare plants
 - All-around good guy

Or Am I?

How (and why) do we authenticate users?

Authentication in the Abstract

- Principal: legitimate owner of an identity
- Claimant: entity trying to be authenticated
- Verify that people or things (e.g., a server) are who they claim to be, or maybe that the claimant has some attribute
- Authentication ≠ Authorization ≠ Access
 Control
 - Authorization is deciding whether an entity should have access to a given resource
 - Access control lists / policies

Authentication Use Cases

- Explicit authentication
 - Single-factor authentication
 - Multi-factor authentication (e.g., with Duo)
- Implicit authentication
 - Continuous authentication
- Risk-based authentication: vary auth requirements based on estimated risk

How We Authenticate (1/2)

- Something you know
 - Password
 - PIN (Personal Identification Number)
- Something you have
 - Private key (of a public-private key pair)
 - Hardware device (often with a key/seed)
 - Phone (running particular software)
 - Token (e.g., hex string stored in a cookie)

How We Authenticate (2/2)

- Something you are
 Biometrics (e.g., iris or fingerprint)
- Somewhere you are
 - Location-limited channels
 - IP address
- Someone you know (social authentication)
 Someone vouches for you
- Some system vouches for you
 - Single sign-on (e.g., UChicago shib)
 - PKI Certificate Authorities

Why Are Passwords So Prevalent?

- Easy to use
- Easy to deploy
- Nothing to carry
- No "silver-bullet" alternative

Why Are Passwords So Prevalent?

Memorywise-Effortless	. .
Scalable-for-Users	
Nothing-to-Carry	U
Physically-Effortless	Jsabilit
Easy-to-Learn	bili
Efficient-to-Use	ty
Infrequent-Errors	
Easy-Recovery-from-Loss	
Accessible	
Negligible-Cost-per-User)ep
Server-Compatible	Deployabili
Browser-Compatible	ab
Mature	Ĩ
Non-Proprietary	y
Resilient-to-Physical-Observation	199
Resilient-to-Targeted-Impersonation	
Resilient-to-Throttled-Guessing	
Resilient-to-Unthrottled-Guessing	
Resilient-to-Internal-Observation	Se
Resilient-to-Leaks-from-Other-Verifiers	Securit
Resilient-to-Phishing	rity
Resilient-to-Theft	
No-Trusted-Third-Party	
Requiring-Explicit-Consent	
Unlinkable	

Bonneau et al. "The Quest to Replace Passwords: A Framework for Comparative Evaluation of Web Authentication Schemes," In *Proc. IEEE S&P*, 2012

Why Are Passwords So Prevalent?

				Usability			Deployability				y	Security												
Category	Scheme	Described in section	Reference	Memorywise-Effortless	scatabte-for-Users Nothing-to-Carry	Physically-Effortless	Easy-to-Learn	Efficient-to-Use	Easy-Recovery-from-Loss	Accessible	Neguguble-Cost-per-User Server-Compatible	Browser-Compatible	Mature	Non-Proprietary	Resultent-to-Physical-Observation	Resultant-to-Jurgeteu-Impersonation Resilient-to-Throttled-Guessing	Resilient-to-Unthrottled-Guessing	Resilient-to-Internal-Observation	Resilient-to-Leaks-from-Other-Verifiers	Resilient-to-Phishing	Resilient-to-Theft	No-Trusted-Third-Party	Kequiring-Explicit-Consent	Ununkable
(Incumbent)	Web passwords	III	[13]		•		•	• •		•			•	•	(>					•	• (
Password managers	Firefox	IV-A	[22] [42]	0		0	•		0	•			•				0		0	•	•	•••		
Proxy	URRSA Impostor	IV-B	[5] [23]	•			•	C	•			•		•		2		0		•	•			
Federated	OpenID Microsoft Passport Facebook Connect BrowserID OTP over email	IV-C	[27] [43] [44] [45] [46]			0000	•				•	• • • •	•	•			00		•		• • • •			
Graphical	PCCP PassGo	IV-D	[7] [47]		•		•					•	0	•					۲	•	•	• •		
Cognitive	GrIDsure (original) Weinshall Hopper Blum Word Association	IV-E			•••••		•	•	•	•		•••••		-							•			
Paper tokens	OTPW S/KEY	IV-F	[33] [32]				•	•	•		•	•	•	•			•	•	•	•	•	• •)

Bonneau et al. "The Quest to Replace Passwords: A Framework for Comparative Evaluation of Web Authentication Schemes," In *Proc. IEEE S&P*, 2012

- Online attack (web)
 - Try passwords on a live system
 - Usually rate-limited

- Online attack (web)
 - Try passwords on a live system
 - Usually rate-limited
- Authenticating to a device is often similarly rate-limited (e.g., iPhone PIN) using secure hardware

- Offline attack (web)
 - Try to guess passwords from the password store / password database

- Offline attack (web)
 - Try to guess passwords from the password store / password database
- Attacking a file encrypted using a key derived from a password (e.g., with PBKDF2) is similar

- Phishing attack: try to trick the user into giving their credentials to you, believing that you are the legitimate system
 - Spear phishing: targeted to the recipient

• Shoulder surfing: looking at someone else entering their credentials

Photo from https://www.researchgate.net/figure/A-shoulder-surfing-situation-in-a-cafe_fig1_312490451

Storing Passwords

- Hash function: one-way function
 - Traditionally designed for efficiency (e.g., MD5, SHA-2), but don't ever use those!
 - Use password-specific hash functions (e.g., bcrypt, scrypt, Argon2)

Hashing on NVIDIA RTX 3090

- Hashcat benchmarks
- MD5: ~ 60 billion / second
- SHA-1: ~ 20 billion / second
- UNIX md5crypt: ~ 20 million / second
- NTLM: ~ 100 billion / second
- SHA-2 (256): ~ 8 billion / second
- bcrypt (32 iterations): ~ 100,000 / second
- scrypt (16384 iterations): ~ 4,000 / second

Storing Passwords

- Salt: random string assigned per-user
 - Combine the password with the salt, then hash it
 - Stored alongside the hashed password
 - Prevents the use of rainbow tables
 - Increases the attacker's work proportional to the number of accounts
- Pepper: secret salt (relatively uncommon)
- Both salt and hash passwords

Typical (Web) Account Creation

- User sends username and desired password over an encrypted tunnel
- Server validates username (e.g., does it exist in the system?) and password (e.g., does it meet composition requirements?)
- Server generates a random salt
 Think about how long the salt should be!
- Server stores username, salt, and hash(password|salt) in database

Typical (Web) Authentication

- User sends username and password₀
 over an encrypted tunnel
- Server looks up the salt and hash output associated with that username
- Server computes hash(password₀|salt)
- If it matches the hash output in the database, typically send back auth token (long string attacker can't guess associated with that user's session)

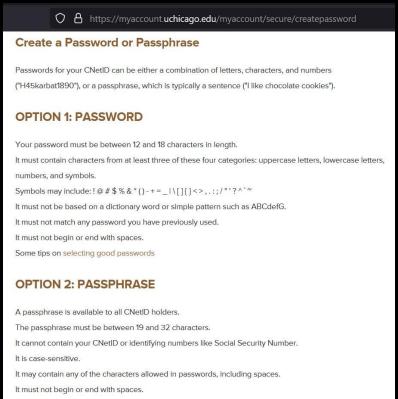
Offline Attack (Revisited)

- Attacker compromises database
 - hash("Blase") =

\$2a\$04\$iHdEgkI681VdDMc3f7edau9phRwORvhYjqWAIb7hb4B5uFJO1g4zi

\$ = delimiter

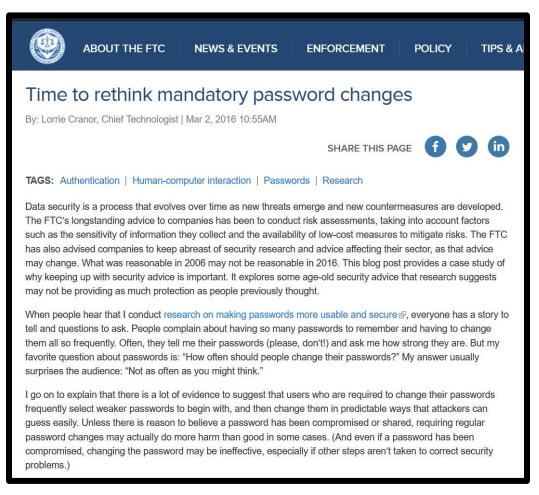
2a = bcrypt 04 = 2⁴ iterations (cost) iHdEgkI681VdDMc3f7edau = 16 bytes of salt (radix-64 encoded) 9phRwORvhYjqWAlb7hb4B5uFJO1g4zi = 24 bytes of hash output (radix-64 encoded)


- Attacker makes and hashes guesses
- Finds match \rightarrow try on other sites

– Password reuse is a core problem

Password Policies (Partial Attempt to Combat Attacks)

Password-Composition Rules


- Initial idea: increase the password space
- In practice: much more nuanced

It must not match any passphrase you have previously used.

Password Expiration

• Require password change every X days?

