
Blase Ur and David Cash

January 31st, 2022

CMSC 23200 / 33250

9. Authentication

Part 1

Who Am I?

• David Cash

– Distinguished cryptographer

– Fan of rare plants

– All-around good guy

Or Am I?

How (and why) do we

authenticate users?

Authentication in the Abstract

• Principal: legitimate owner of an identity

• Claimant: entity trying to be authenticated

• Verify that people or things (e.g., a

server) are who they claim to be, or maybe

that the claimant has some attribute

• Authentication ≠ Authorization ≠ Access

Control

– Authorization is deciding whether an entity

should have access to a given resource

– Access control lists / policies

Authentication Use Cases

• Explicit authentication

– Single-factor authentication

– Multi-factor authentication (e.g., with Duo)

• Implicit authentication

– Continuous authentication

• Risk-based authentication: vary auth

requirements based on estimated risk

How We Authenticate (1/2)

• Something you know

– Password

– PIN (Personal Identification Number)

• Something you have

– Private key (of a public-private key pair)

– Hardware device (often with a key/seed)

– Phone (running particular software)

– Token (e.g., hex string stored in a cookie)

How We Authenticate (2/2)

• Something you are

– Biometrics (e.g., iris or fingerprint)

• Somewhere you are

– Location-limited channels

– IP address

• Someone you know (social authentication)

– Someone vouches for you

• Some system vouches for you

– Single sign-on (e.g., UChicago shib)

– PKI Certificate Authorities

Passwords

Why Are Passwords So Prevalent?

• Easy to use

• Easy to deploy

• Nothing to carry

• No “silver-bullet” alternative

Why Are Passwords So Prevalent?

Bonneau et al. “The Quest to Replace Passwords: A Framework for Comparative
Evaluation of Web Authentication Schemes,” In Proc. IEEE S&P, 2012

Why Are Passwords So Prevalent?

Bonneau et al. “The Quest to Replace Passwords: A Framework for Comparative
Evaluation of Web Authentication Schemes,” In Proc. IEEE S&P, 2012

Attacks Against Passwords

• Online attack (web)

– Try passwords on a live system

– Usually rate-limited

Attacks Against Passwords

• Online attack (web)

– Try passwords on a live system

– Usually rate-limited

• Authenticating to a device is often similarly

rate-limited (e.g., iPhone PIN) using

secure hardware

Attacks Against Passwords

• Offline attack (web)

– Try to guess passwords from the password

store / password database

Attacks Against Passwords

• Offline attack (web)

– Try to guess passwords from the password

store / password database

• Attacking a file encrypted using a key

derived from a password (e.g., with

PBKDF2) is similar

Attacks Against Passwords

• Phishing attack: try to trick the user into

giving their credentials to you, believing

that you are the legitimate system

– Spear phishing: targeted to the recipient

Attacks Against Passwords

• Shoulder surfing: looking at someone

else entering their credentials

Photo from https://www.researchgate.net/figure/A-shoulder-surfing-situation-in-a-cafe_fig1_312490451

Storing Passwords

• Hash function: one-way function

– Traditionally designed for efficiency (e.g.,

MD5, SHA-2), but don’t ever use those!

– Use password-specific hash functions (e.g.,

bcrypt, scrypt, Argon2)

Hashing on NVIDIA RTX 3090

• Hashcat benchmarks

• MD5: ~ 60 billion / second

• SHA-1: ~ 20 billion / second

• UNIX md5crypt: ~ 20 million / second

• NTLM: ~ 100 billion / second

• SHA-2 (256): ~ 8 billion / second

• bcrypt (32 iterations): ~ 100,000 / second

• scrypt (16384 iterations): ~ 4,000 / second

https://www.onlinehashcrack.com/tools-benchmark-hashcat-nvidia-rtx-3090.php

Storing Passwords

• Salt: random string assigned per-user

– Combine the password with the salt, then

hash it

– Stored alongside the hashed password

– Prevents the use of rainbow tables

– Increases the attacker’s work proportional to

the number of accounts

• Pepper: secret salt (relatively uncommon)

• Both salt and hash passwords

Typical (Web) Account Creation

• User sends username and desired

password over an encrypted tunnel

• Server validates username (e.g., does it

exist in the system?) and password (e.g.,

does it meet composition requirements?)

• Server generates a random salt

– Think about how long the salt should be!

• Server stores username, salt, and

hash(password|salt) in database

Typical (Web) Authentication

• User sends username and password0

over an encrypted tunnel

• Server looks up the salt and hash output

associated with that username

• Server computes hash(password0|salt)

• If it matches the hash output in the

database, typically send back auth token

(long string attacker can’t guess

associated with that user’s session)

Offline Attack (Revisited)

• Attacker compromises database

– hash(“Blase”) =
$2a$04$iHdEgkI681VdDMc3f7edau9phRwORvhYjqWAIb7hb4B5uFJO1g4zi

$ = delimiter

2a = bcrypt

04 = 24 iterations (cost)

iHdEgkI681VdDMc3f7edau = 16 bytes of salt (radix-64 encoded)

9phRwORvhYjqWAIb7hb4B5uFJO1g4zi = 24 bytes of hash output (radix-64 encoded)

• Attacker makes and hashes guesses

• Finds match → try on other sites

– Password reuse is a core problem

24

Password Policies

(Partial Attempt to

Combat Attacks)

Password-Composition Rules

• Initial idea: increase the password space

• In practice: much more nuanced

Password Expiration

• Require password change every X days?

