
David Cash & Blase Ur

TLS and Certificates

CMSC 23200/33250, Winter 2022, Lecture 13

University of Chicago

Outline

- Securing a Connection to a Server: Threat Model

- Overview of how TLS works

- Authenticating endpoints: Certificates (Certs)

- Issuing Certs, Attacks, Countermeasures

- Revoking Certs (Attacks, Countermeasures, …)

- A Closer Look at TLS 1.3 (2018 — Present)

Threat Model for Secure Channels on the Internet

• Malicious/eavesdropping infrastructure

• Examples: router, person at coffeeshop, ISP…

• Malicious DNS Server (who may lie) 

• Not in threat model: Compromised endpoint

DNS Server

Server (Web, SSH, …)

TLS in the Protocol Stack

Application (HTTP)

Transport (TCP)

Network (IP)

Data Link (Ethernet)

Physical (802.11)

TLS

• TLS takes requests from application (e.g. browser speaking HTTP)

• TLS uses TLS connection to communicate with other host

1993 
SSL v1.0

1995 
SSL v2.0

1996 
SSL v3.0

1999 
TLS v1.0

2006 
TLS v1.1

2008 
TLS v1.2

August 2018 
TLS v1.3

Insecure
Insecure

Major

issues Major

issues Major

issues Worked but

time for an

upgrade Going okay?

History: SSL/TLS
• SSL = “Secure Sockets Layer”

• TLS = “Transport Layer Security” (renaming of SSL)

TLS Adoption

• Originally for financial transactions

TLS Adoption

TLS Adoption

(Source: transparencyreport.google.com, via Matt Green)

http://transparencyreport.google.com

Crypto
primitives

• RSA, DSA,
ECDSA

• Diffie–Hellman,
ECDH

• HMAC
• MD5, SHA1,

SHA-2
• DES, 3DES,

RC4, AES
• Export grade

Ciphersuite
details

• Data structures
• Key derivation
• Encryption

modes, IVs
• Padding

Advanced
functionality

• Alerts & errors
• Certification /

revocation
• Negotiation
• Renegotiation
• Session

resumption
• Key reuse
• Compression
• State machine

Libraries

• OpenSSL
• LibreSSL,

BoringSSL
• NSS
• GnuTLS
• SChannel
• Java JSSE
• Everest / miTLS
• s2n

Applications

• Web browsers:
Chrome, Firefox,
IE/Edge, Safari

• Web servers:
Apache, IIS,
nginx, node, …

• Application
SDKs

• Certificates
• Protocols

• HTTP, IMAP, ..

Attacks on TLS

Attacks on TLS Stebila • 2018-09-04 5

Cross-protocol

DH/ECDH attack

RC4 biases,
rc4nomore,
Bar Mitzvah

CRIME,
BREACH, HEIST

Triple handshake
attack

goto
fail;

Goldberg &
Wagner

Netscape
PRNG attack

FREAK, Logjam

Sweet32

Lucky13

Termination,
Cookie Cutter

Bleichenbacher

SSL 2.0
downgrade,

FREAK, Logjam

POODLE

BEAST

Cross-protocol
DH/ECDH attack

SLOTH

Bleichenbacher,

Collisions

Ray & Dispensa

Debian
OpenSSL

entropy bug

“Most dangerous code…
”

MalloDroid

CCS
injection

BER
serk

Heartbleed

C
A breaches

Frankencerts

Virtual host
confusion

SSL strippingSMACK

STARTTLS

injection
Lucky

microseconds

Jager et al.
DROWN

Template For Secure Channels (TLS, SSH, IPSec, …)

Key Exchange (“Handshake”)

<encrypted data>

…

A←ga
K←Hash(Ba)

B←gb
K←Hash(Ab)

A

B

<encrypted data>

<encrypted data>

Symmetric Encryption (“Record Protocol”)

• Template can be secure against passive adversaries.

• But template pictured provides no authentication.

uchicago.edu

Authentication with Certificates (=“Certs”)

A

B; Cert; CertVerify

• Cert is a document saying  
 “The public key of uchicago.edu is pk=0x7b5532…” 

• CertVerify is signature of handshake that verifies under pk: 
 CertVerify=Sign(sk,handshake)  

• Randomness ensures transcript changes each run. 

• Many, many details omitted.

uchicago.edu

sk

Certificates and Transferring Trust
Certificate Authority (CA)

(PK*,SK*)

google.com

(PK1,SK1)
PK1

cert1
cert1=[PK1,”google.com",σ1]

uchicago.edu

(PK2,SK2)

PK2

cert2=[PK2,”uchicago.edu",σ2]

cert2
PK*

- Trusted CA “issues certs”, i.e. signs public keys of other orgs.

σ1=Sign(SK*,”google.com||PK1”)

Intermediate CAs and Cert Chains
Root CA

(PK*,SK*)
PK1

cert1

PK*

Intermediate CA

(PK1,SK1)

uchicago.edu

(PK2,SK2)

PK2

cert2=[PK2,”uchicago.edu",σ2]

cert2

PK2; cert1 ;cert2

PK* bound to root ⇒ PK1 bound to CA ⇒ PK2 bound to uchicago.edu

X.509 Certificates Include

• Serial number

• CA info (public key, name, etc)

• Common name of subject

• Public key of subject

• Expiration date

• Supported protocols

• Extensions (possibly many)

Root Certificates

Issuing Certificates: Validation

(PK*,SK*)

uchicago.edu

(PK1,SK1)
PK1

cert1
cert1=[PK1,”uchicago.edu”,σ1]

• CA must check that key really does to “google.com”

Domain Validation (DV): Check that party with that key can control
domain.

Org. Validation (OV) and Extended Validation (EV): Also check company
name, location etc via public records.

ACME Protocol by Let’s Encrypt (Future Assignment)

(PK*,SK*)
PK1

cert1

1. Requestor submits public key and request to CA

2. CA gives a challenge to requestor

3. Requestor places challenge on web server, proving ownership

4. CA then issues cert

uchicago.edu

(PK1,SK1)

cert1=[PK1,”uchicago.edu”,σ1]

• For wildcard certs (*.uchicago.edu) similar protocol used, but
with DNS server… why?

What if you had “valid” cert for uchicago.edu?

uchicago.edu
(PK1,SK1)

A

B’; Cert; CertVerify

A’

B; Cert; CertVerify

• “Machine-in-the-middle” can read/change all traffic undetected

• Needs access to network path (or DNS)

“rogue cert”

CA Security

[Aas et al, 2019]

CA Security Incidents

(Slide inspiration: Dan Boneh)

• 2011, Root CA Comodo: Login credentials stolen. Hacker issues certs for
mail.google.com, login.live.com, www.google.com, login.yahoo.com…

• 2011, Root CA DigiNotar: Hacker issues rogue cert for *.google.com,
others. Used to PitM by Iranian government.

• 2013, Root CA TurkTrust: Accidentally issues intermediate CA cert, used to
issue gmail.com cert.

• …

• 2019, Root CA Comodo: Pushes email login credentials to public GitHub
repo…

Countermeasure: Public-Key Pinning

• Site can tell client to only accept certs from certain CAs

• Helped discover some rogue certs from previous slide 

• But… if site gets hacked… attacker can pin a malicious cert!

• Deprecated now.

Countermeasure: Revocation

• Explicitly list revoked certificates so they are no longer accepted

Certification Revocation: Cert. Revocation Lists (CRLs)

(PK*,SK*)

CA’s CRL Server

Revoked serial numbers:

09823342365

23423482349

98072344456

…

• CA provides list of revoked certs

• List will get big, hard to keep current

Online Certificate Status Protocol (OCSP)

uchicago.edu

(PK2,SK2)A

B; Cert; CertVerify

OCSP Server (CA)

Is Cert valid? Yes or No  

(“OCSP response”)

Revoke my cert!

• Add another server to connect to, slowing connection

• What if OCSP server times out?

• Privacy problem?

OCSP Stapling

uchicago.edu

(PK2,SK2)A

B; Cert; CertVerify; OCSP response

OCSP Server (CA) Is Cert valid?

Yes or No  

(“OCSP response”)

• TLS Extension that allows for OCSP response to be included with cert

• Client checks CA signature and time-stamp on response (~hours old).

• Certs can have “must staple” extension.

OCSP Stapling

uchicago.edu

(PK2,SK2)A

OCSP Server (CA) Is Cert valid?

Yes or No  

(“OCSP response”)

• Problems?

• OCSP server goes down => uchicago.edu goes down (or ignore)

B; Cert; CertVerify; OCSP response

Certificate Transparency (CT)

Certificate Transparency (CT)

(PK*,SK*)

CA

google.com

PK

cert

cert
CT Log Server

cert1
cert2
cert3

…

• CT Log server maintains a list of 
all certs issued by CA(s).

• “Monitors” check for improper certs.

Certificate Transparency (CT)

(https://certificate.transparency.dev/howctworks/)

• How do CT and OCSP compare?

• What problems do they solve?

Challenges with CT

• List is huuuuge

• Trust the CT Log?

• Who checks?

• Privacy?

CT Log Server

cert1
cert2
cert3

…

The SHA512 hash of my list at
time Feb 3, noon is:  

d52791f1b51412c52b720e907f6103…

Yet More Problems with Certs…

[Moxie’2009]

• Step 1: Blase requests cert for domain 

 
 google.com\0.blaseur.com

• Step 2: Blase can validate this domain; He owns blaseur.com

• Step 3: Blase MitM’s a victim, and presents his cert as a google.com cert

• Result: Browser runs 
 
 strcmp("google.com", "google.com\0.blaseur.com")  
 
which returns 1, accepting cert.

The End

