
15. How the Web Works

(Part 2)

Blase Ur and David Cash

February 14th, 2022

CMSC 23200 / 33250

The Anatomy of a Webpage

• view-source:https://www.cs.uchicago.edu/

• HTML (hypertext markup language)

– Formatting of a page

– All sorts of formatting: <div><p>Hi</p></div>

– Links: Click here

– Pictures:

– Forms

• HTML 5 introduced many media elements

The Anatomy of a Webpage

The Anatomy of a Webpage

• CSS (cascading style sheets)

• <link href="/css/main.css?updated=20181020002547"

rel="stylesheet" media="all">

• view-

source:https://www.cs.uchicago.edu/css/main.css?updated=2018102

0002547

• id (intended to be unique)

• class (not intended to be unique)

The Anatomy of a Webpage

• DOM (document object model)

Typing Something into a Browser:

• DNS (domain name service)

– www.cs.uchicago.edu resolves to IP address

128.135.164.125

• https://www.cs.uchicago.edu/

– Protocol: https

– Hostname: www.cs.uchicago.edu

– Default file name (since none is listed):

index.html (and similar)

http://www.cs.uchicago.edu/

HTTP Request

• HTTP = Hypertext Transfer Protocol

• Start line: method, target, protocol version

– GET /index.html HTTP/1.1

– Method: GET, PUT, POST, HEAD, OPTIONS

• HTTP Headers

– Host, User-agent, Referer, many others
– https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers

• Body (not needed for GET, etc.)

• In Firefox: F12, “Network” to see HTTP
requests

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers

HTTP Request

From https://developer.mozilla.org/en-US/docs/Web/HTTP/Messages

• GET /index.html HTTP/1.1

Sending Data to a Server

• GET request

– Data at end of URL (following “?”)

• POST request

– Typically used with forms

– Data not in URL, but rather (in slightly encoded
form) in the HTTP request body

• PUT request

– Store an entity at a location

URL Parameters / Query String

• End of URL (GET request)

– https://www.cs.uchicago.edu/?test=foo&test2=bar

HTTP Response

• Status: https://developer.mozilla.org/en-US/docs/Web/HTTP/Status

– 200 (OK)

– 404 (not found)

– 301 (moved permanently)

– 302 (moved temporarily)

• HTTP Headers

• Body

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status

HTTP

From https://developer.mozilla.org/en-US/docs/Web/HTTP/Messages

HTTPS

• Simply an HTTP request sent over TLS!

– That is, the request and response are encrypted

• An extension of HTTP over TLS (i.e., the

request/response itself is encrypted)

• Which CAs (certificate authorities) does

your browser trust?

– Firefox: Options → Privacy & Security → (all the

way at the bottom) View Certificates

Keeping State Using Cookies

• Cookies enable persistent state

• Set-Cookie HTTP header

• Cookie HTTP header

– Cookie: name=value; name2=value2;
name3=value3

• Cookies are automatically sent with all
requests your browser makes

• Cookies are bound to an origin (only sent to
the origin that set them)

Keeping State Using Cookies

• Session cookies (until you close your
browser) vs. persistent cookies (until the
expiration date)

• Secure cookies = only sent over HTTPS, not
HTTP

• HTTPonly cookies are not accessible to
JavaScript, etc.

• View cookies: “Application” tab in Chrome
developer tools, “Storage” in Firefox

Authorization Tokens = Cookies

• You log into a website, and it presents you

an authorization token (typically a hash of

some secret)

• Subsequent HTTP requests automatically

embed this authorization token

Other Ways to Keep State

• Local storage

• Flash cookies

• (Many more)

Interactive Pages?

• JavaScript!

– The core idea: Let’s run (somewhat) arbitrary code
on the client’s computer

• Math, variables, control structures

• Imperative, object-oriented, or functional

• Modify the DOM

• Request data (e.g., through AJAX)

• Can be multi-threaded (web workers)

