
16. Web Security and

Attacks (Part 1)

Blase Ur and David Cash

February 16th, 2022

CMSC 23200 / 33250

JavaScript

Interactive Pages?

• JavaScript!

– The core idea: Let’s run (somewhat) arbitrary code
on the client’s computer

• Math, variables, control structures

• Imperative, object-oriented, or functional

• Modify the DOM

• Request data (e.g., through AJAX)

• Can be multi-threaded (web workers)

Common Javascript Libraries

• JQuery (easier access to DOM)

– $(".test").hide() hides all elements with

class="test"

• JQueryUI

• Bootstrap

• Angular / React

• Google Analytics (sigh)

Importing Javascript Libraries

Do You Have the Right .js File?

• Subresource integrity (SRI):
https://developer.mozilla.org/en-
US/docs/Web/Security/Subresource_Integrity

• <script src=“https://example.com/example-
framework.js” integrity="sha384-
oqVuAfXRKap7fdgcCY5uykM6+R9GqQ8K/uxy
9rx7HNQlGYl1kPzQho1wx4JwY8wC“
crossorigin="anonymous"></script>

• cat FILENAME.js | openssl dgst -sha384 -
binary | openssl base64 –A

https://developer.mozilla.org/en-US/docs/Web/Security/Subresource_Integrity
https://example.com/example-framework.js

Patching JavaScript Libraries

• Many outdated (and sometimes vulnerable)

JavaScript libraries continue to be used

• Very complex chain of dependencies!

– How do you determine if a given change is for

good or evil?

Core Web Defense:

Same-Origin Policy

Same-Origin Policy

• Prevent malicious DOM access

• Origin = URI scheme, host name, port

• Only if origin that loaded script matches can

a script access the DOM

– Not where the script ultimately comes from, but

what origin loads the script

Same-Origin Policy (SOP)

Iframes (Inline Frames)

• Enable you to embed a webpage inside

another webpage

Image from https://www.thoughtco.com/when-to-use-iframes-3468667

CORS (Relaxes SOP)

• Cross-Origin Resource Sharing

– Specifies when specific other origins can make

a request for data on a different origin

• https://developer.mozilla.org/en-

US/docs/Web/HTTP/CORS

• Access-Control-Allow-Origin: https://foo.example

• Access-Control-Allow-Methods: POST, GET, OPTIONS

• Access-Control-Allow-Headers: X-PINGOTHER, Content-Type

• Access-Control-Max-Age: 86400

12

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

When CORS is Not Needed

13From https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

When CORS is Needed

14From https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

Revisiting SRI Relative to CORS

• <script src=https://example.com/example-

framework.js integrity="sha384-

oqVuAfXRKap7fdgcCY5uykM6+R9GqQ8K/u

xy9rx7HNQlGYl1kPzQho1wx4JwY8wC“

crossorigin="anonymous"></script>

– anonymous = No credentials (e.g., cookies)

– use-credentials

15From https://developer.mozilla.org/en-US/docs/Web/HTML/Attributes/crossorigin

https://example.com/example-framework.js

CSRF

Cross-Site Request Forgery (CSRF)

• Goal: Make a user perform some action on

a website without their knowledge

– Trick the browser into having them do this

• Main idea: Cause a user who’s logged into

that website to send a request that has

lasting effects

Cross-Site Request Forgery (CSRF)

• Prerequisites:

– Victim is logged into important.com in a

particular browser

– important.com accepts GET and/or POST

requests for important actions

– Victim encounters attacker’s code in that same

browser

CSRF Example

• Victim logs into important.com and they stay

logged in (within some browser)

– Likely an auth token is stored in a cookie

• Attacker causes victim to load
https://www.important.com/transfer.php?amount=1000

00000&recipient=blase

– This is a GET request. For POST requests, auto-

submit a form using JavaScript

• Transfer money, cast a vote, change a

password, change some setting, etc.

CSRF: How?!

• On blaseur.com have Cat

photos

• Send an HTML-formatted email with

• Have a hidden form on blaseur.com with

JavaScript that submits it when page loads

• Etc.

CSRF: Why Does This Work?

• Recall: Cookies for important.com are

automatically sent as HTTP headers with

every HTTP request to important.com

• Victim doesn’t need to visit the site explicitly,

but their browser just needs to send an

HTTP request

• Basically, the browser is confused

– “Confused deputy” attack

CSRF: Key Mitigations

• Check HTTP referrer (less good)

– But this can sometimes be forged

• CSRF token (standard practice)

– “Randomized” value known to important.com

and inserted as a hidden field into forms

– Key: not sent as a cookie, but sent as part of

the request (HTTP header, form field, etc.)

