16. Web Security and

Blase Ur and David Cash
February 16th, 2022
CMSC 23200/ 33250

= THE UNIVERSITY OF

O CHICAGO

JavaScript

Interactive Pages?

« JavaScript!

— The core idea: Let’s run (somewhat) arbitrary code
on the client’s computer

 Math, variables, control structures

* Imperative, object-oriented, or functional
Modity the DOM
Request data (e.g., through AJAX)

» Can be multi-threaded (web workers)

Common Javascript Libraries

JQuery (easier access to DOM)

— $(".test").hide() hides all elements with
class="test"

JQueryUI
Bootstrap
Angular / React
Google Analytics

Importing Javascript Libraries

c @& view-source:https://www.cs.uchicago.edu/ 110% oee w N o

</div>
</div>
</div>

<div class="row">
<div class="footer copy">

<p>© 2021 The University of Chicago</p>
</div>
</div>
</div>

</footer>

<script defer src="/js/libs/modernizr.js?updated=20191205080224"></script>

<script src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.4/jquery.min.js"></script>
<script src="https://ajax.googleapis.com/ajax/libs/jqueryui/l.11.4/jquery-ui.min.js"></script>
<script>window.jQuery || document.write ('<script src="/js/libs/jquery/2.1.4/jquery.min.js"><\/script><script src="/js/libs}
<script defer src="/js/core-min.js?updated=20191205080225"></script>

<!--[if 1lte IE 8]><script src="/js/libs/selectivizr.js"></script><![endif]-->
<!--[if lte IE 9]><script src="/js/ie fixes/symbolset.js"></script><![endif]-->
<!--<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery.lifestream/0.3.7/jquery.lifestream.min.js"></script> —->

<script async src="https://www.googletagmanager.com/gtag/js?id=UA-3572058-1"></script>
<script>window.datalayer = window.datalayer || [];function gtag() {datalayer.push (arguments);}gtag('js', new Date());
gtag('config', 'UA-3572058-1");gtag('config', 'UA-187440939-1"');</script>

</body>
</html>

Do You Have the Right .js File?

» Subresource integrity (SRI):
https://developer.mozilla.org/en-
US/docs/Web/Security/Subresource_Inteqgrity

» <SCript src= https //example.com/example-
framework.js” integrity="sha384-
oqVUAfXRKap7fdgcCY5uykM6+RIGQ8K/uxy
Orx/HNQIGYI1kPzQho1wx4JwY8wC*
crossorigin="anonymous"></script>

» cat FILENAME.js | openss| dgst -sha3384 -
binary | openssl basec4 —A

https://developer.mozilla.org/en-US/docs/Web/Security/Subresource_Integrity
https://example.com/example-framework.js

Patching JavaScript Libraries

* Many outdated (and sometimes vulnerable)
JavaScript libraries continue to be used
* Very complex chain of dependencies!

— How do you determine if a given change is for
good or evil?

Core Web Defense:
Same-O0rigin Policy

Same-Origin Policy

* Prevent malicious DOM access
* Origin = URI scheme, host name, port

* Only If origin that loaded script matches can
a script access the DOM

— Not where the script ultimately comes from, but
what origin loads the script

Same-0Origin Policy (SOP)

https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy Bl e w N

Definition of an origin

Two URLs have the same origin if the protocol, port (if specified), and host are the same for
both. You may see this referenced as the "scheme/host/port tuple”, or just "tuple". (A "tuple" is a
set of items that together comprise a whole — a generic form for double/triple/quadruple
/quintuple/etc.)

The following table gives examples of origin comparisons with the URL
http://store.company.com/dir/page.html:

URL Outcome Reason

Same
http://store.company.com/dir2/other.html o Only the path differs

origin
http://store.company.com/dir/inner Same

- - g Only the path differs
/another.html origin
https://store.company.com/page.html Failure Different protocol
. . Different port (http:// is port 80 by

http://store.company.com:81/dir/page.html Failure

default)

http://news.company.com/dir/page.html Failure Different host

Iframes (Inline Frames)

* Enable you to embed a webpage inside
another webpage

CORS (Relaxes SOP)

» Cross-Origin Resource Sharing

— Specifies when specific other origins can make
a request for data on a different origin

* https.//developer.mozilla.org/en-
US/docs/Web/HTTP/CORS

e Access-Control-Allow-Origin: https://foo.example

* Access-Control-Allow-Methods: POST, GET, OPTIONS
* Access-Control-Allow-Headers: X-PINGOTHER, Content-Type

* Access-Control-Max-Age: 86400

12

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

When CORS is Not Needed

Some requests don't trigger a CORS preflight. Those are called simple requests, though the Fetch & spec
(which defines CORS) doesn't use that term. A simple request is one that meets all the following
conditions:

¢ One of the allowed methods:
> GET
o HEAD
o POST
« Apart from the headers automatically set by the user agent (for example, Connection, User-Agent,
or the other headers defined in the Fetch spec as a forbidden header name @), the only headers

which are allowed to be manually set are
those which the Fetch spec defines as a CORS-safelisted request-header 2, which are:

> Accept

o Accept-Language

o Content-Language

» Content-Type (please note the additional requirements below)

* The only type/subtype combinations allowed for the media type specified in the Content-Type
header are:

> application/x-www-form-urlencoded
o multipart/form-data
o text/plain

e |f the request is made using an XMLHttpRequest object, no event listeners are registered on the
object returned by the XMLHttpRequest.upload property used in the request; that is, given an

XMLHttpRequest instance xhr, no code has called xhr.upload.addEventListener() to add an
event listener to monitor the upload.

¢ No ReadableStream object is used in the request.

From https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

13

When CORS is Needed

What requests use CORS?

This cross-origin sharing standard (@ can enable cross-origin HTTP requests for:

¢ Invocations of the XMLHttpReqguest or Fetch APls, as discussed above.

¢ Web Fonts (for cross-domain font usage in @font-face within CSS),
so that servers can deploy TrueType fonts that can only be loaded cross-origin and used by web sites

that are permitted to do so. @

¢ WebGL textures.

¢ Images/video frames drawn to a canvas using drawImage() .

e CSS Shapes from images.

This is a general article about Cross-Origin Resource Sharing and includes a discussion of the necessary
HTTP headers.

From https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

14

Revisiting SRI Relative to CORS

« <script src=https://example.com/example-
framework.|s integrity="sha384-
oqVUAFXRKap7fdgcCY5uykM6+R9GoQ8EK/u
Xy9rx7HNQIGYI1kPzQho1wx4JwY8wC"
crossorigin="anonymous"></script>
— anonymous = No credentials (e.g., cookies)

— use-credentials

From https://developer.mozilla.org/en-US/docs/Web/HTML/Attributes/crossorigin 15

https://example.com/example-framework.js

CSRF

Cross-Site Request Forgery (CSRF)

« Goal: Make a user perform some action on
a website without their knowledge

— Trick the browser into having them do this

* Main idea: Cause a user who's logged into
that website to send a request that has
lasting effects

Cross-Site Request Forgery (CSRF)

* Prerequisites:
— Victim is logged into important.com in a
particular browser

— important.com accepts GET and/or POST
requests for important actions

— Victim encounters attacker’s code In that same
browser

CSRF Example

* Victim logs into important.com and they stay
logged in (within some browser)

— Likely an auth token is stored in a cookie

o Attacker causes victim to load

https://www.important.com/transfer.php?amount=1000
00000&recipient=blase

— This is a GET request. For POST requests, auto-
submit a form using JavaScript

» Transfer money, cast a vote, change a
password, change some setting, etc.

CSRF: How?!

 On blaseur.com have Cat
photos

« Send an HTML-formatted email with

* Have a hidden form on blaseur.com with
JavaScript that submits it when page loads

o EtcC.

CSRF: Why Does This Work?

» Recall: Cookies for important.com are
automatically sent as HT TP headers with
every HT TP request to important.com

* Victim doesn’t need to visit the site explicitly,
but their browser just needs to send an
HT TP request

« Basically, the browser is confused

— “Confused deputy” attack

CSRF: Key Mitigations

 Check HTTP referrer (less good)

— But this can sometimes be forged

« CSRF token (standard practice)

— "Randomized” value known to important.com
and inserted as a hidden field into forms

— Key: not sent as a cookie, but sent as part of
the request (HT TP header, form field, etc.)

