20. Network Attacks II

Blase Ur and David Cash

(many slides borrowed from Ben Zhao, Christo Wilson, & others) February 25th, 2022 CMSC 23200 / 33250

DNS attacks

DNS (Uncached)

DNS (Cached, Benign)

DNS Cache Poisoning Attack

DNS Cache Poisoning Result

DNS Cache Poisoning Result

Despite these major points of vulnerability in the DNS caching process, DNS poisoning attacks are not easy. Because the DNS resolver does actually query the authoritative nameserver, attackers have only a few milliseconds to send the fake reply before the real reply from the authoritative nameserver arrives.

Attackers also have to either know or guess a number of factors to carry out DNS spoofing attacks:

- Which DNS queries are not cached by the targeted DNS resolver, so that the resolver will query the authoritative nameserver
- What port* the DNS resolver is using they used to use the same port for every query, but now they use a different, random port each time
- The request ID number
- Which authoritative nameserver the query will go to

DNS Cache Poisoning

Mallory wins if any $r_i = s_i$

See <u>http://unixwiz.net/techtips/iguide-kaminsky-dns-vuln.html</u> for details

DNS responses signed

Higher levels vouch for lower levels — e.g., root vouches for .edu, .edu vouches for .uchicago, ...

Root public key published

Problem? Costly and slow adoption

The Coffeeshop Attack Scenario

- DNS servers bootstrapped by wireless AP
 - (default setting for WiFi)
- Attacker hosts AP w/ ID (O'Hare Free WiFi)
 - You connect w/ your laptop
 - Your DNS requests go through attacker DNS
 - <u>www.bofa.com</u> → evil bofa.com
 - Password sniffing, malware installs, ...
- TLS certificates to the rescue!

The Subtleties That Make Security So Challenging

Security Subtleties: DNS to Trick CAs

owp 2.2.2.0/23

AS 3

Adversary

I own 2.2.2.0/23

AS containing

example.com

I own 2.2.2.0/24

AS containing

example.com

can get to 2.2.2.0/24

ASA

From Birge-Lee et al. "Bamboozling Certificate Authorities with BGP," in *Proc.* USENIX Security, 2018. See also Birge-Lee et al. "Experiences Deploying (Multi-Vantage-Point Domain Validation at Let's Encrypt," in *Proc. USENIX Security*, 2021.

Denial of Service (Attacks on Availability)

Denial of Service (DoS)

- Prevent users from being able to access a specific computer, service, or piece of data
- In essence, an attack on availability
- Possible vectors:
 - Exploit bugs that lead to crashes
 - Exhaust the resources of a target
- Often very easy to perform...
- ... and fiendishly difficult to mitigate

DoS Attack Goals & Threat Model

- Active attacker who may send arbitrary packets
- Goal is to reduce the availability of the victim

DoS Attack Parameters

- How much bandwidth is available to the attacker?
 - Can be increased by controlling more resources...
 - Or tricking others into participating in the attack
- What kind of packets do you send to victim?
 - Minimize effort and risk of detection for attacker...
 - While also maximizing damage to the victim

Exploiting Asymmetry: DDoS

SYN Flood

TCP SYN Flood

- TCP stack keeps track of connection state in data structures called Transmission Control Blocks (TCBs)
 - New TCB allocated by the kernel whenever a listen socket receives a SYN
 - TCB must persist for at least one RTO
- Attack: flood the victim with SYN packets
 - Exhaust available memory for TCBs, prevent legitimate clients from connecting
 - Crash the server OS by overflowing kernel memory
- Advantages for the attacker
 - No connection each SYN can be spoofed, no need to hear responses
 - Asymmetry attacker does not need to allocate TCBs

Why Does Smurfing Work?

- 1. Internet Control Message Protocol (ICMP) does not include authentication
 - No connections
 - Receivers accept messages without verifying the source
 - Enables attackers to spoof the source of messages
- 2. Attacker benefits from an amplification factor

 $amp \ factor = \frac{total \ response \ size}{request \ size}$

Reflection/Amplification Attacks

- Smurfing is an example of a reflection or amplification DDoS attack
- Fraggle attack similarly uses broadcasts for amplification
 - Send spoofed UDP packets to IP broadcast addresses on port 7 (echo) and 13 (chargen)
 - echo 1500 bytes/pkt requests, equal size responses
 - chargen -- 28 bytes/pkt request, 10K-100K bytes of ASCII in response
 - Amp factor
 - echo [number of hosts responding to the broadcast]:1
 - chargen [number of hosts responding to the broadcast]*360:1

DNS Reflection Attack

- Spoof DNS requests to many **open** DNS resolvers
 - DNS is a UDP-based protocol, no authentication of requests
 - Open resolvers accept requests from any client
 - E.g. 8.8.8.8, 8.8.4.4, 1.1.1.1, 1.0.0.1
 - February 2014 25 million open DNS resolvers on the internet
- 64 byte DNS queries generate large responses
 - Old-school "A" record query \rightarrow maximum 512 byte response
 - EDNS0 extension "ANY" record query \rightarrow 1000-6000 byte response
 - E.g. \$ dig ANY isc.org
 - Amp factor 180:1
- Attackers have been known to register their own domains and install very large records just to enable reflection attacks!

NTP Reflection Attack

- Spoof requests to open Network Time Protocol (NTP) servers
 - NTP is a UDP-based protocol, no authentication of requests
 - May 2014 2.2 million open NTP servers on the internet
- 234 byte queries generate large responses
 - *monlist* query: server returns a list of all recent connections
 - Other queries are possible, i.e. *version* and *showpeers*
 - Amp factor from 10:1 to 560:1

memcached Reflection Attack

- Spoof requests to open memcached servers
 - Popular <key:value> server used to cache web objects
 - memcached uses a UDP-based protocol, no authentication of requests
 - February 2018 50k open memcached servers on the internet
- 1460 byte queries generate large responses
 - A single query can request multiple 1MB <key:value> pairs from the database
 - Amp factor up to 50000:1

Infamous DDoS Attacks

When	Against Who	Size	How
March 2013	Spamhaus	120 Gbps	Botnet + DNS reflection
February 2014	Cloudflare	400 Gbps	Botnet + NTP reflection
September 2016	Krebs	620 Gbps	Mirai
October 2016	Dyn (major DNS provider)	1.2 Tbps	Mirai
March 2018	Github	1.35 Tbps	Botnet + memcached reflection

Content Delivery Networks (CDNs)

- CDNs help companies scale-up their websites
 - Cache customer content on many replica servers
 - Users access the website via the replicas
- Examples: Akamai, Cloudflare, Rackspace, Amazon Cloudfront, etc.
- Side-benefit: DDoS protection
 - CDNs have many servers, and a huge amount of bandwidth
 - Difficult to knock all the replicas offline
 - Difficult to saturate all available bandwidth
 - No direct access to the master server
- Cloudflare: 15 Tbps of bandwidth over 149 data centers

DDoS Defense via CDNs

- What if you DDoS the master replica?
 - Cached copies in the CDN still available
 - Easy to do ingress filtering at the master
- What if you DDoS the replicas?
 - Difficult to kill them all
 - Dynamic DNS can redirect users to live replicas

Botnets

- Infected machines are a fundamentally valuable resource
 - Unique IP addresses for spamming
 - Bandwidth for DDoS
 - CPU cycles for bitcoin mining
 - Credentials
- Early malware monetized these resources directly
 - Infection and monetization were tightly coupled
- Botnets allow criminals to rent access to infected hosts
 - Infrastructure as a service, i.e. the cloud for criminals
 - Command and Control (C&C) infrastructure for controlling bots
 - Enables huge-scale criminal campaigns

Old-School C&C: IRC Channels

Easy to locate and take down

Domain Name Generation (DGA)

Software Security in the Browser

Drive-by Exploits

- Browsers are extremely complex
 - Millions of lines of source code
 - Rely on equally complex plugins from 3rd party developers
 - *e.g.*, Adobe Flash, Microsoft Silverlight, Java
- Must deal with untrusted, complex inputs
 - Network packets from arbitrary servers
 - HTML, JavaScript, stylesheets, images, video, audio, etc.
- Recipe for disaster
 - Attacker directs victim to website containing malicious content
 - Leverage exploits in browser to attack OS and gain persistence

Executing a Drive-by

- Host exploits on a *bulletproof host*
 - No need to distribute (expensive) exploit code to other websites
 - Resist law enforcement takedowns
- Victim acquisition
 - Spam containing links (email, SMS, messenger)
 - Compromise legitimate websites
 & add traps (*e.g.*, via XSS)
 - Hidden *iframes* that load exploit website
 - Force a redirect to the exploit website

