
20. Network Attacks II

Blase Ur and David Cash
(many slides borrowed from Ben Zhao, Christo Wilson, & others)

February 25th, 2022

CMSC 23200 / 33250

DNS attacks

DNS (Uncached)

Images from https://www.cloudflare.com/learning/dns/dns-cache-poisoning/

DNS (Cached, Benign)

Images from https://www.cloudflare.com/learning/dns/dns-cache-poisoning/

DNS Cache Poisoning Attack

Images from https://www.cloudflare.com/learning/dns/dns-cache-poisoning/

DNS Cache Poisoning Result

Images from https://www.cloudflare.com/learning/dns/dns-cache-poisoning/

DNS Cache Poisoning Result

Images from https://www.cloudflare.com/learning/dns/dns-cache-poisoning/

DNS Cache Poisoning

Alice
Local

DNS

resolver

Q: www.bank.com

QID: x

ns.bank.com

A: 2.2.2.2

QID: x

Mallory

spoof src IP of ns.bank.com

A: 3.3.3.3

guess QID: x

Race

Defense:

randomize 16-bit QID

Kaminsky attack (2008)

Alice
Local

DNS

resolver

ns.bank.com

Mallory

Alice runs JavaScript

from mallory.com

Q: a.bank.com

…

Q: b.bank.com

Q: c.bank.com

…

Mallory wins if any ri = sj

Spoof entire *.bank.com zone

by including “sibling” domain

See http://unixwiz.net/techtips/iguide-kaminsky-dns-vuln.html for details

http://unixwiz.net/techtips/iguide-kaminsky-dns-vuln.html

DNSSEC

DNS responses signed

Higher levels vouch for lower levels

— e.g., root vouches for .edu, .edu vouches for

.uchicago, …

Root public key published

Problem?
Costly and slow adoption

The Coffeeshop Attack Scenario

• DNS servers bootstrapped by wireless AP

– (default setting for WiFi)

• Attacker hosts AP w/ ID (O’Hare Free WiFi)

– You connect w/ your laptop

– Your DNS requests go through attacker DNS

– www.bofa.com → evil bofa.com

– Password sniffing, malware installs, …

• TLS certificates to the rescue!

http://www.bofa.com/

The Subtleties That Make Security

So Challenging

Security Subtleties: DNS to Trick CAs

From Birge-Lee et al. “Bamboozling Certificate Authorities with BGP,” in Proc.
USENIX Security, 2018. See also Birge-Lee et al. “Experiences Deploying {Multi-
Vantage-Point} Domain Validation at Let's Encrypt,” in Proc. USENIX Security, 2021.

Denial of Service (Attacks on

Availability)

Denial of Service (DoS)

• Prevent users from being able to access a

specific computer, service, or piece of data

• In essence, an attack on availability

• Possible vectors:

– Exploit bugs that lead to crashes

– Exhaust the resources of a target

• Often very easy to perform…

• … and fiendishly difficult to mitigate

DoS Attack Goals & Threat Model

Internet
Servers
128.91.0.*

66.66.0.11

I wanna knock
those servers

offline… but how?

• Active attacker who may send arbitrary packets

• Goal is to reduce the availability of the victim

DoS Attack Parameters

• How much bandwidth is available to the attacker?

– Can be increased by controlling more resources…

– Or tricking others into participating in the attack

• What kind of packets do you send to victim?

– Minimize effort and risk of detection for attacker…

– While also maximizing damage to the victim

Exploiting Asymmetry: DDoS

Internet
Server
128.91.0.166.66.0.11

10
Mbps

1 Mbps1 Mbps 10
Mbps

• Example of a Distributed Denial of Service
Attack (DDoS)

• Some DDoS is fueled by volunteers
• E.g. Anonymous and Low Orbit Ion Canon

(LOIC)

• Most DDoS is fueled by botnets

SYN Flood

Internet
Server
128.91.0.166.66.0.11

• What kind of packets do you send to the
victim?

• Ideally, should be “connectionless”
• Difficult to spoof TCP connections

• Should maximize the resources used by the
victim

SYN

SYN

TCP SYN Flood

• TCP stack keeps track of connection state in data structures called

Transmission Control Blocks (TCBs)

– New TCB allocated by the kernel whenever a listen socket receives a SYN

– TCB must persist for at least one RTO

• Attack: flood the victim with SYN packets

– Exhaust available memory for TCBs, prevent legitimate clients from

connecting

– Crash the server OS by overflowing kernel memory

• Advantages for the attacker

– No connection – each SYN can be spoofed, no need to hear responses

– Asymmetry – attacker does not need to allocate TCBs

The Smurf Attack

Internet
Server
128.91.0.166.66.0.11

10.7.0.0 10.7.0.1 10.7.0.253 10.7.0.254

…

PING Request
Src: 128.91.0.1
Dst: 10.7.0.255

• *.*.*.255 is a broadcast packet
• Forwarded to all hosts in the /24

Why Does Smurfing Work?

1. Internet Control Message Protocol (ICMP) does not include

authentication

– No connections

– Receivers accept messages without verifying the source

– Enables attackers to spoof the source of messages

2. Attacker benefits from an amplification factor

𝑎𝑚𝑝 𝑓𝑎𝑐𝑡𝑜𝑟 =
𝑡𝑜𝑡𝑎𝑙 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑠𝑖𝑧𝑒

𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑠𝑖𝑧𝑒

Reflection/Amplification Attacks

• Smurfing is an example of a reflection or amplification

DDoS attack

• Fraggle attack similarly uses broadcasts for amplification

– Send spoofed UDP packets to IP broadcast addresses on port 7

(echo) and 13 (chargen)

• echo – 1500 bytes/pkt requests, equal size responses

• chargen -- 28 bytes/pkt request, 10K-100K bytes of ASCII in

response

– Amp factor

• echo – [number of hosts responding to the broadcast]:1

• chargen – [number of hosts responding to the broadcast]*360:1

DNS Reflection Attack

• Spoof DNS requests to many open DNS resolvers

– DNS is a UDP-based protocol, no authentication of requests

– Open resolvers accept requests from any client

• E.g. 8.8.8.8, 8.8.4.4, 1.1.1.1, 1.0.0.1

– February 2014 – 25 million open DNS resolvers on the internet

• 64 byte DNS queries generate large responses

– Old-school “A” record query → maximum 512 byte response

– EDNS0 extension “ANY” record query → 1000-6000 byte response

• E.g. $ dig ANY isc.org

– Amp factor – 180:1

• Attackers have been known to register their own domains and

install very large records just to enable reflection attacks!

Reflection Example

Internet

Server
128.91.0.1

DNS Request
Src: 128.91.0.1
Dst: whatever

NTP Reflection Attack

• Spoof requests to open Network Time Protocol (NTP)

servers

– NTP is a UDP-based protocol, no authentication of requests

– May 2014 – 2.2 million open NTP servers on the internet

• 234 byte queries generate large responses

– monlist query: server returns a list of all recent connections

– Other queries are possible, i.e. version and showpeers

– Amp factor – from 10:1 to 560:1

memcached Reflection Attack

• Spoof requests to open memcached servers

– Popular <key:value> server used to cache web objects

– memcached uses a UDP-based protocol, no
authentication of requests

– February 2018 – 50k open memcached servers on the
internet

• 1460 byte queries generate large responses

– A single query can request multiple 1MB <key:value>
pairs from the database

– Amp factor – up to 50000:1

Infamous DDoS Attacks

When Against Who Size How

March 2013 Spamhaus 120 Gbps Botnet + DNS reflection

February 2014 Cloudflare 400 Gbps Botnet + NTP reflection

September 2016 Krebs 620 Gbps Mirai

October 2016 Dyn (major DNS provider) 1.2 Tbps Mirai

March 2018 Github 1.35 Tbps Botnet + memcached reflection

Content Delivery Networks (CDNs)

• CDNs help companies scale-up their websites

– Cache customer content on many replica servers

– Users access the website via the replicas

• Examples: Akamai, Cloudflare, Rackspace, Amazon

Cloudfront, etc.

• Side-benefit: DDoS protection

– CDNs have many servers, and a huge amount of bandwidth

– Difficult to knock all the replicas offline

– Difficult to saturate all available bandwidth

– No direct access to the master server

• Cloudflare: 15 Tbps of bandwidth over 149 data centers

CDN Basics
Master

Website content and
database is here

Content is
cached in the

replicas

• Users requests all go
through the replicas

• Most served from cache

DDoS Defense via CDNs
Master

• What if you DDoS the
master replica?

• Cached copies in the
CDN still available

• Easy to do ingress
filtering at the
master

• What if you DDoS the
replicas?

• Difficult to kill them
all

• Dynamic DNS can
redirect users to live
replicas

BOTNETS

Botnets

• Infected machines are a fundamentally valuable resource

– Unique IP addresses for spamming

– Bandwidth for DDoS

– CPU cycles for bitcoin mining

– Credentials

• Early malware monetized these resources directly

– Infection and monetization were tightly coupled

• Botnets allow criminals to rent access to infected hosts

– Infrastructure as a service, i.e. the cloud for criminals

– Command and Control (C&C) infrastructure for controlling bots

– Enables huge-scale criminal campaigns

Old-School C&C: IRC Channels

IRC Servers

snd spam:
<subject> <msg>

snd spam:
<subject> <msg>

snd spam:
<subject> <msg>

• Problem: single point of failure

• Easy to locate and take down

Fast Flux DNS

HTTP
Servers

12.34.56.78 6.4.2.0 31.64.7.22 245.9.1.43 98.102.8.1

www.my-botnet.com
But: ISPs can blacklist

the rendezvous domain

Change DNS→IP
mapping every 10

seconds

Domain Name Generation (DGA)

HTTP
Servers

www.sb39fwn.com www.17-cjbq0n.com www.xx8h4d9n.com

Bots generate many
possible domains

each day

…But the Botmaster only
needs to register a few

Can be
combined with

fast flux

Software Security in the Browser

Drive-by Exploits

• Browsers are extremely complex

– Millions of lines of source code

– Rely on equally complex plugins from 3rd party developers

• e.g., Adobe Flash, Microsoft Silverlight, Java

• Must deal with untrusted, complex inputs

– Network packets from arbitrary servers

– HTML, JavaScript, stylesheets, images, video, audio, etc.

• Recipe for disaster

– Attacker directs victim to website containing malicious content

– Leverage exploits in browser to attack OS and gain persistence

Executing a Drive-by

• Host exploits on a bulletproof host

– No need to distribute (expensive) exploit code to other websites

– Resist law enforcement takedowns

• Victim acquisition

– Spam containing links (email,

SMS, messenger)

– Compromise legitimate websites

& add traps (e.g., via XSS)

• Hidden iframes that load exploit

website

• Force a redirect to the exploit

website

