Introduction to Differential Privacy CMSC 23200/33250, Winter 2022, Lecture 22

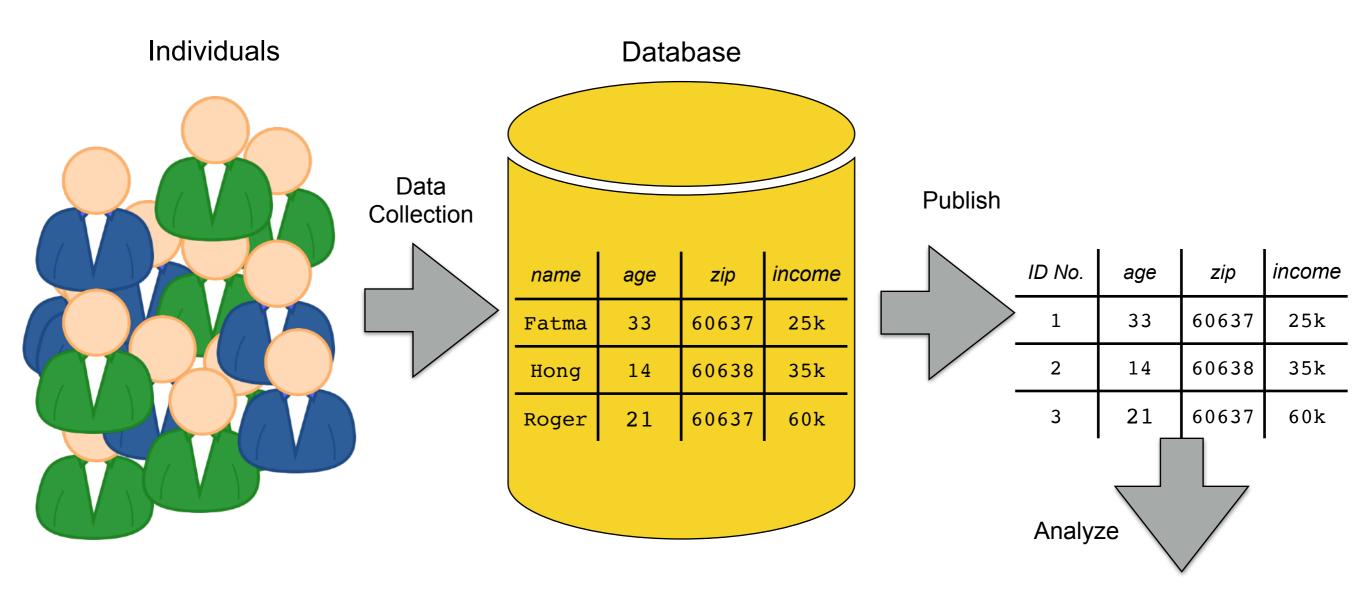
David Cash and Blase Ur

University of Chicago

Outline

- 1. Basic Setting and Ideas for Differential Privacy
- 2. Local Differential Privacy and Randomized Response
- 3. (Traditional) Differential Privacy
- 4. Some Attacks against Differential Privacy Systems

Recalling the Problem Setting



Lessons from Last Time

- 1. Old methods (e.g. de-identification) provide little protection
- 2. Principled methods (k-anonymity, I-diversity) also fail often

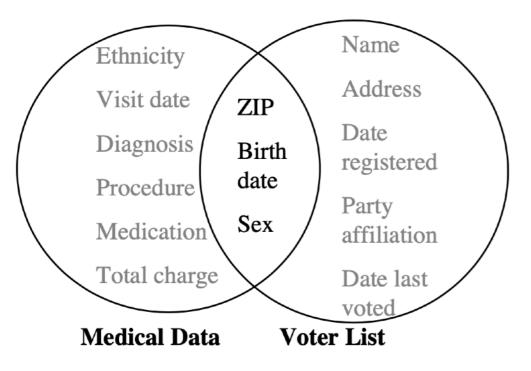


Figure 1 Linking to re-identify data

Source: L. Sweeney. k-anonymity: a model for protecting privacy. International Journal on Uncertainty, Fuzziness and Knowledge-based Systems, 10 (5), 2002; 557-570.

	N	Non-Sens	Sensitive		
	Zip Code	Age	Nationality	Condition	
1	130**	< 30	*	Heart Disease	
2	130**	< 30	*	Heart Disease	
3	130**	< 30	*	Viral Infection	
4	130**	< 30	*	Viral Infection	
5	1485*	≥ 40	*	Cancer	
6	1485*	≥ 40	*	Heart Disease	
7	1485*	≥ 40	*	Viral Infection	
8	1485*	≥ 40	*	Viral Infection	
9	130**	3*	*	Cancer	
10	130**	3*	*	Cancer	
11	130**	3*	*	Cancer	
12	130**	3*	*	Cancer	

Fig. 2. 4-Anonymous Inpatient Microdata

Source: A. Machanavajjhala et al. I-Diversity: Privacy Beyond k-Anonymity. TKDD 2007.

Properties of an Ideal Data Privacy Solution

- 1. Hide *all* information that may be harmful to individuals.
- 2. Resist attacks by adversaries with *arbitrary* background data.
- 3. Still release useful information.

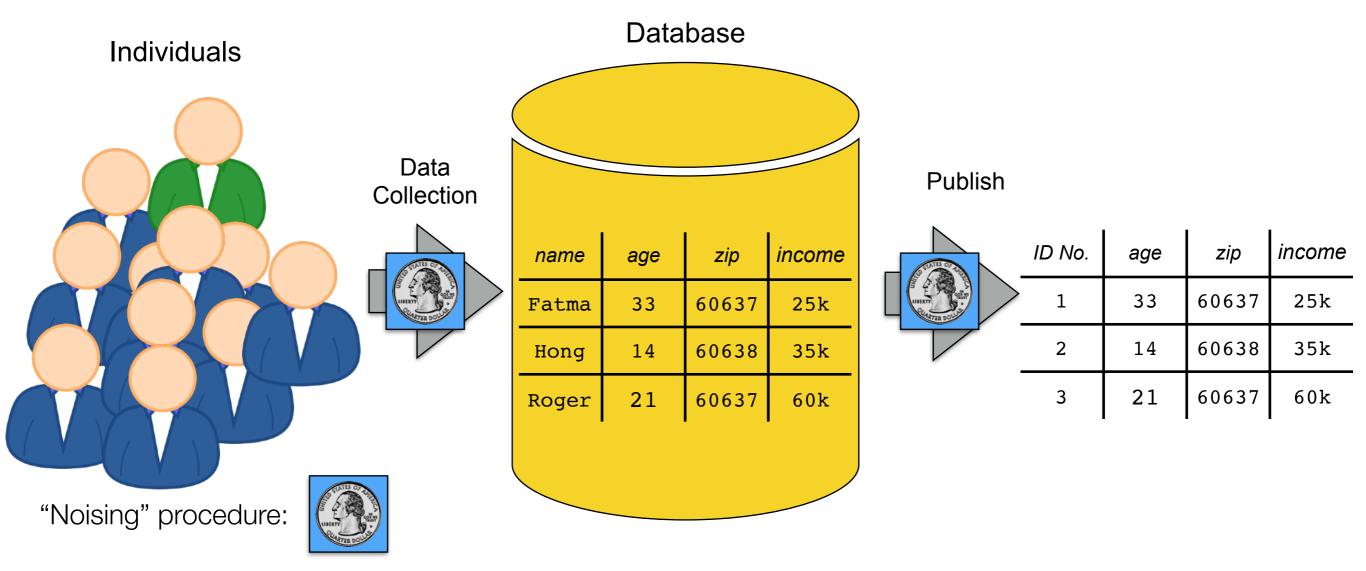
Initial Insights (inspired by Randomized Response)

- 1. Approximate answers can be (just as) useful.
- 2. Focus on the *distribution* of what is released, not actual responses.
- 3. Plausible deniability may be good protection.

Differential Privacy: Main Idea

Design Philosophy: Publish data with some random "noise" added. Adding or removing any individual from the data should not change the *distribution* of the output "by too much".

• If data release does not change much when an individual is included, conclude that they are protected.



Differential Privacy: TODOs

Design Philosophy: Publishing data with some random "noise" added. Adding or removing an individual from the data should not change the *distribution* of the output "by too much".

- How should this noise be chosen? How much noise?
- How should we measure changes in distributions?
- What do these protections mean in practice?

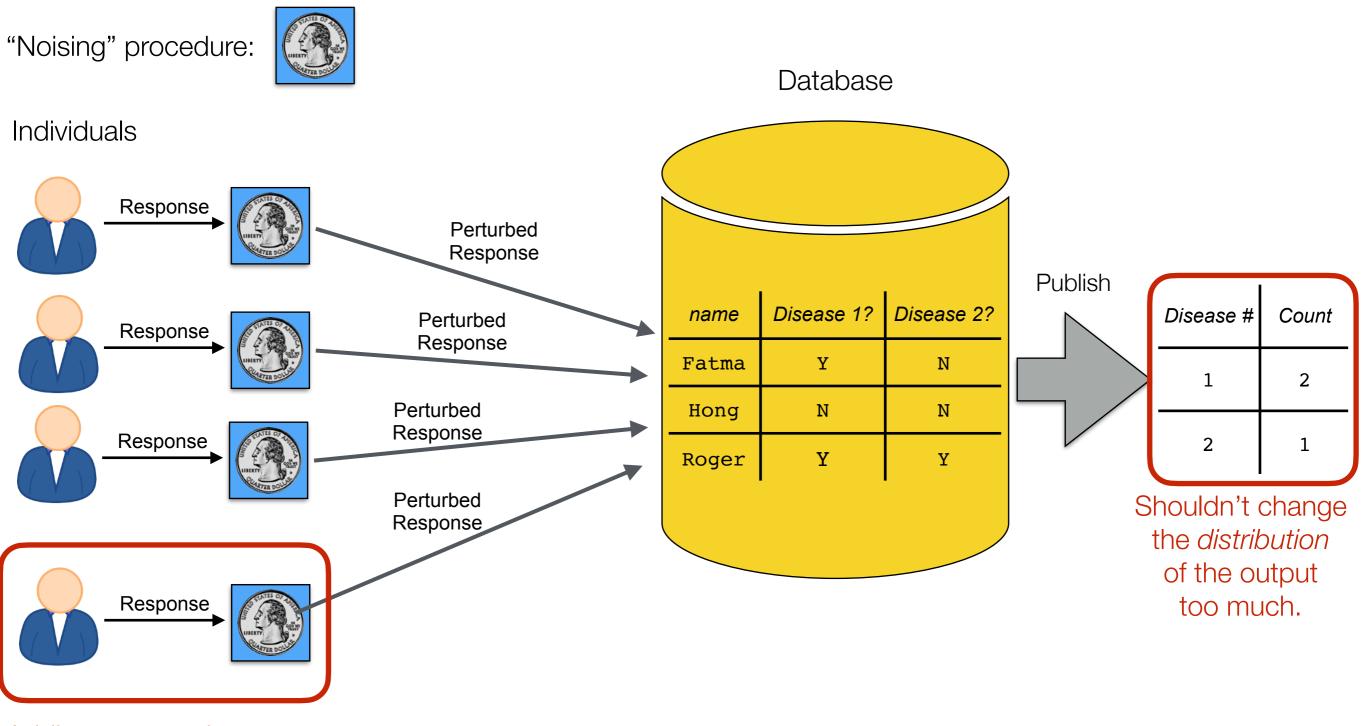
Outline

1. Basic Setting and Ideas for Differential Privacy

2. Local Differential Privacy and Randomized Response

- 3. (Traditional) Differential Privacy
- 4. Some Attacks against Differential Privacy Systems

System Architecture for Local Differential Privacy



Adding or removing one...

Defining Local Differential Privacy

Definition: A randomized algorithm A is <u> ϵ -locally-differentially-private</u> if:

- For every pair of local inputs x, x'
- $_$ For every set S of possible outputs

It holds that:

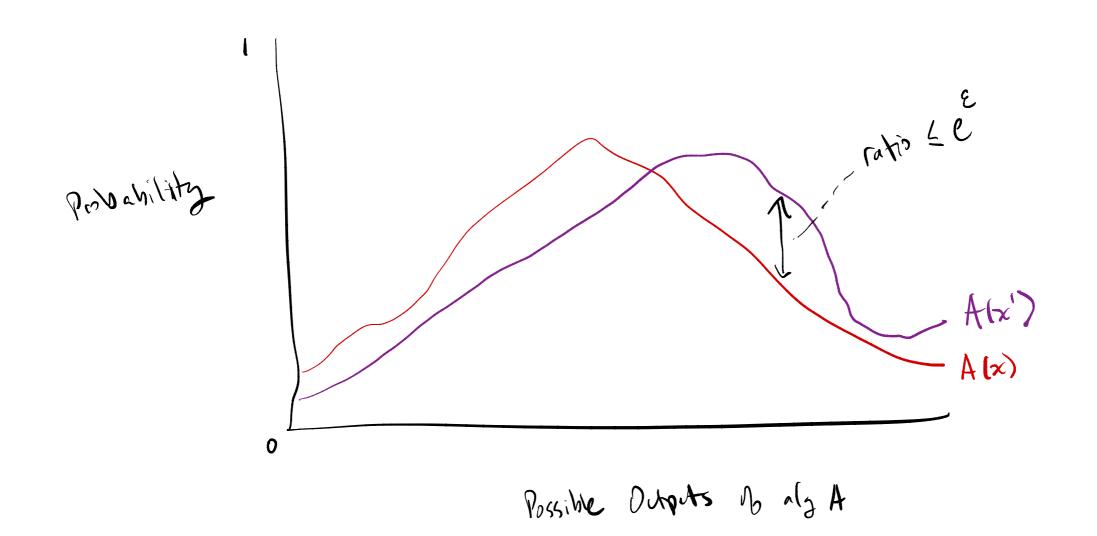
$\Pr[A(x) \in S] \le e^{\varepsilon} \cdot \Pr[A(x') \in S]$

- $e \approx 2.71$ is Euler's number. Could just use ε instead of e^{ε}
- Definition is symmetric in x, x'.
- The event " $A(x) \in S$ " can represent any observation as the set S changes. ("Average was in some range" or "Even number of people had disease").
- Smaller ε means better privacy. ε =0 means distributions are same.

Measuring Distribution Change

Fix any local inputs x, x', running A(x) and A(x') will induce two distributions that we hope are close. We know:

 $\Pr[A(x) \in S] \le e^{\varepsilon} \cdot \Pr[A(x') \in S]$



Randomized Response is Locally-DP

Definition of A_{rr} : Takes an input $x \in \{Y, N\}$.

- With probability 0.5, $A_{rr}(x) = x$
- With probability 0.5, $A_{rr}(x)$ outputs *Y* or *N* uniformly at random.

<u>Claim</u>: $A_{\rm rr}$ is ε -locally-DP for $\varepsilon = \ln 3 \approx 1.10$.

<u>Proof</u>: Must show for all $S \subseteq \{Y, N\}$ and all $x, x' \in \{Y, N\}$,

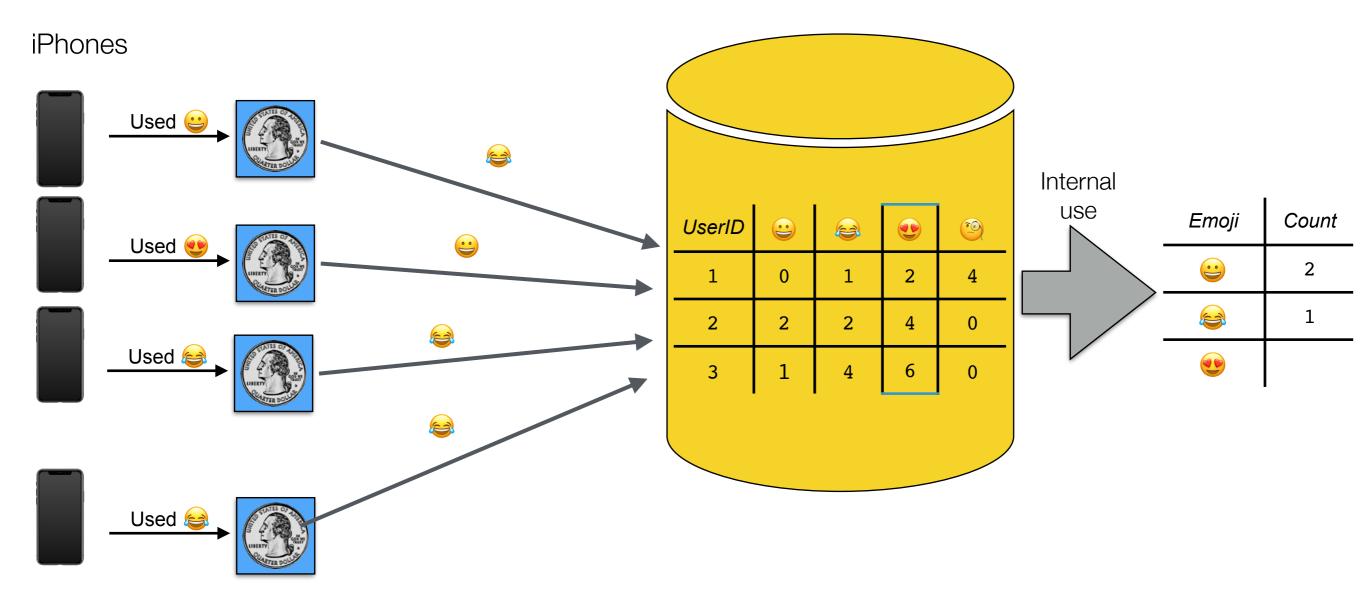
 $\Pr[A_{\rm rr}(x) \in S] \le e^{\varepsilon} \cdot \Pr[A_{\rm rr}(x') \in S].$

Only need to consider x = Y, x' = N and $S = \{Y\}$ or $S = \{N\}$:

- $\Pr[A_{rr}(Y) = Y] = 0.5 + 0.5 \cdot 0.5 = 0.75$
- $\Pr[A_{rr}(N) = Y] = 0.5 \cdot 0.5 = 0.25$ (others are similar)

Checking cases, $\Pr[A_{rr}(x) \in S] \leq 3 \cdot \Pr[A_{rr}(x') \in S]$ always. In other words: A_{rr} is ε -locally-DP for $\varepsilon = \ln 3$.

Deployed Local DP: Apple iPhone Data Collection



- Per-user table is supposedly not actually stored
- Also collecting: Power usage, text slang (!), ...

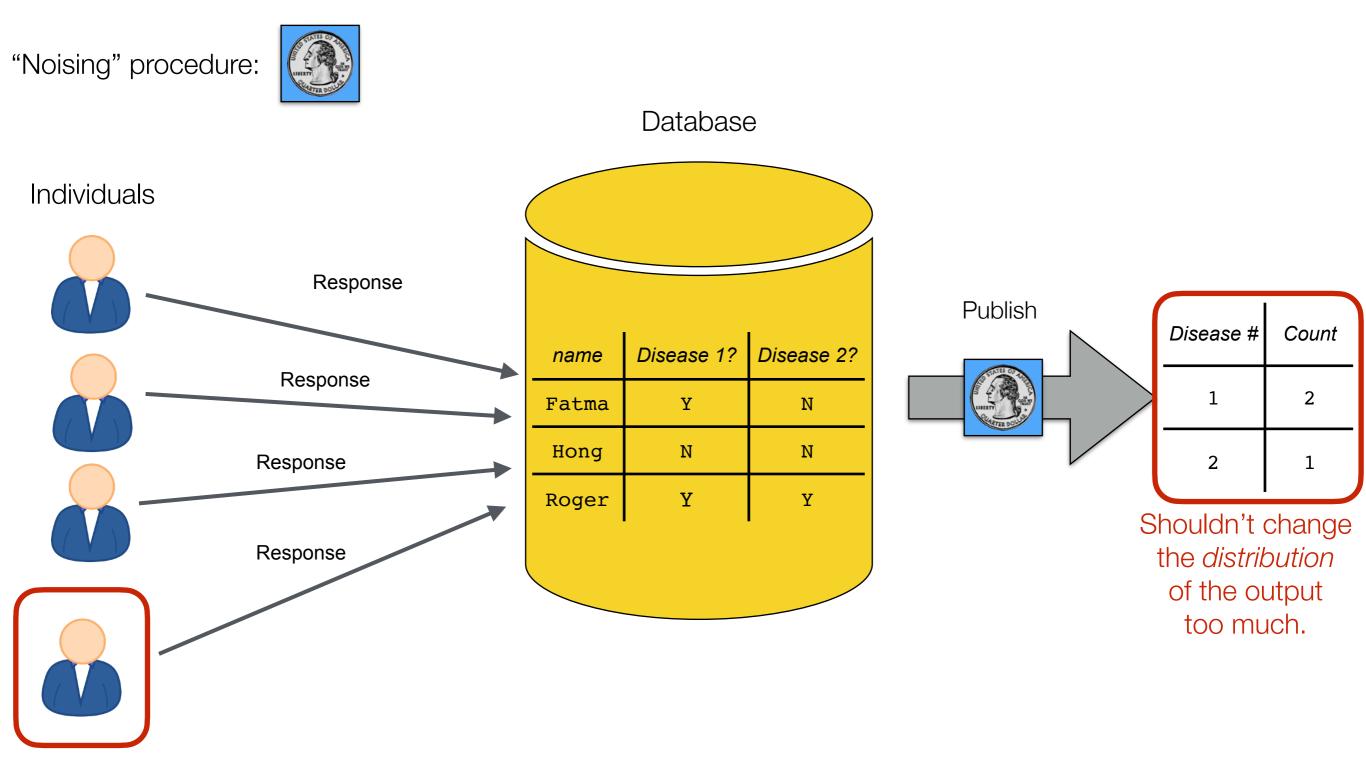
Outline

- 1. Basic Setting and Ideas for Differential Privacy
- 2. Local Differential Privacy and Randomized Response

3. (Traditional) Differential Privacy

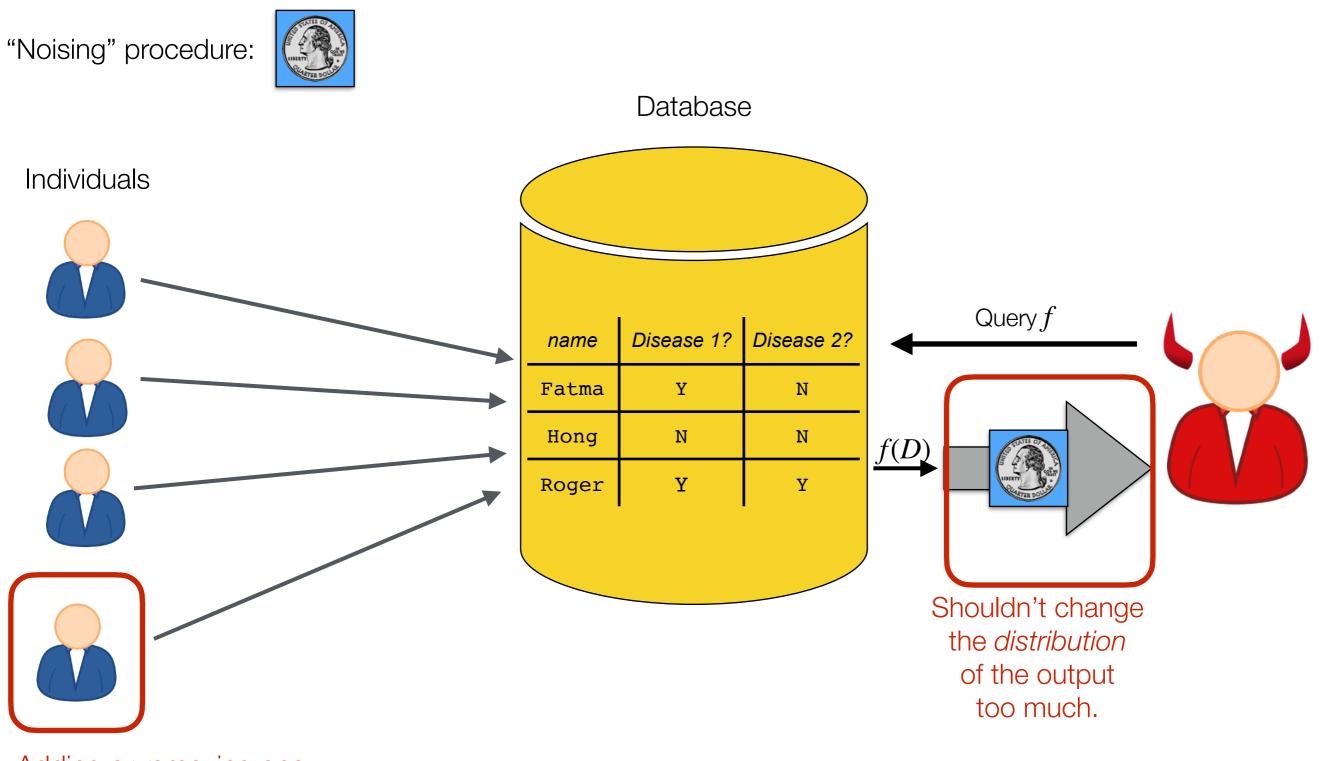
4. Some Attacks against Differential Privacy Systems

System Architecture: (Traditional) Differential Privacy



Adding or removing one...

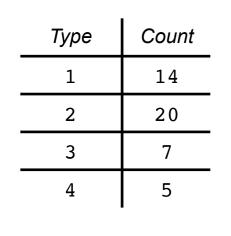
System Architecture: (Traditional) Differential Privacy

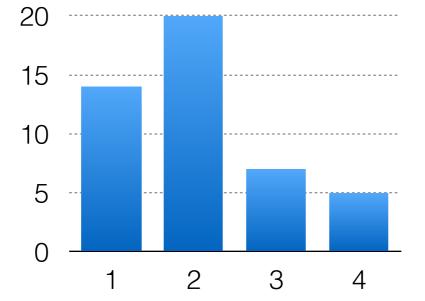


Adding or removing one...

• Noised version of f(D) is usually denoted $\mathscr{M}(D)$

Simplifying the Problem: Abstract "Databases"





- Data D is table of counts
- Query f can be arbitrary function of D

Definition: Datasets D, D' are <u>neighboring</u> if they are exactly the same, except they differ by exactly 1 in a single count.

Example:	Туре	Count		Туре	Count
	1	12		1	12
	2	20		2	<u>21</u>
	3	9		3	9
	4	2	-	4	2

Defining Differential Privacy

Definition: A randomized algorithm \mathcal{M} is <u> ϵ -differentially-private</u> if:

- For every pair of neighboring tables D, D'
- $_$ For every set S of possible outputs

It holds that:

```
\Pr[\mathscr{M}(D) \in S] \le e^{\varepsilon} \cdot \Pr[\mathscr{M}(D') \in S]
```

• Goal: Add as little noise as possible while respecting definition

Calibrating Noise: Sensitivity of a Query

Definition: The <u>sensitivity of a function f</u>, denoted Δf , is defined to be

$$\Delta f = \max_{D,D'} |f(D) - f(D')|$$

where the maximum is taken over *neighboring* pairs of tables D, D'.

- Adding someone to D can change f(D) by at most Δf .
- Plan: Add more noise when Δf is large, to hide effect of individual.
- \bullet Won't need to worry about any other property of f

Sensitivity of a Query: Examples

Database D:	Disease # Could 1 21 2 11 3 4 4 94 5 77	1 1 4	Query $f(D)$: Output number with disease #1 Question: What is Δf ?
Database <i>D</i> :	Name Fatma Hong Ron Oren	Age 21 20 35 25	Query $f(D)$: Output number of people over 21 Question: What is Δf ?
Database D:	Name	Income	Query $f(D)$: Average income

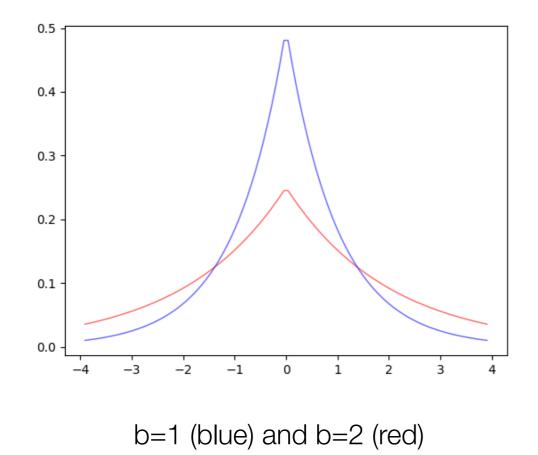
Question: What is Δf ?

Fatma	35k
Hong	20k
Ron	100k
Oren	50k

The Laplace Distribution

Definition: The Laplace distribution (centered at zero) with scale b is defined to have probability density function

$$\frac{1}{2b}e^{-|x|/b}.$$



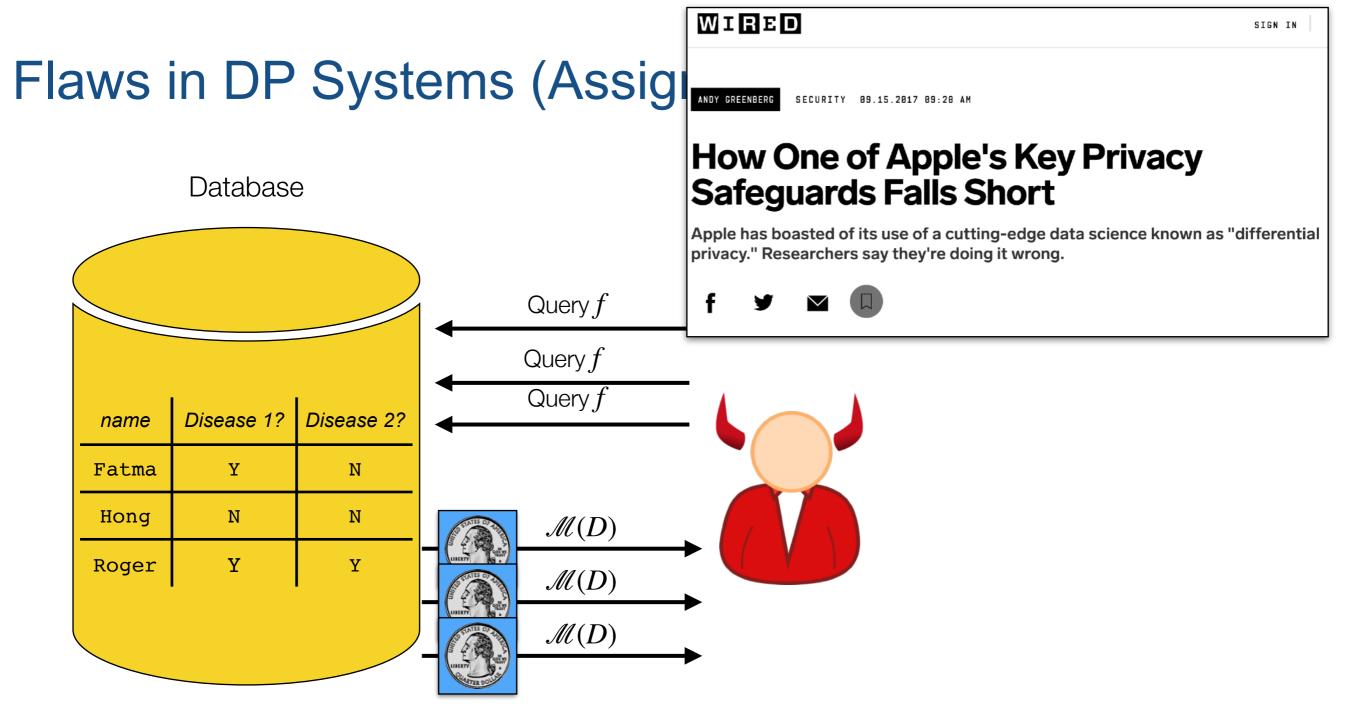
• Larger scale \Rightarrow More variance

The Laplace Mechanism

<u>Definition</u>: The Laplace Mechanism \mathcal{M} for a query f with privacy parameter ε is defined to be

 $\mathcal{M}(D) = f(D) + \text{Laplace}(\Delta f/\varepsilon).$

- Larger $\Delta f \Rightarrow$ Larger scale \Rightarrow More variance \Rightarrow Less utility
- Smaller $\varepsilon \Rightarrow$ Larger scale \Rightarrow More variance \Rightarrow Less utility
- Can show: This is "optimal" distribution amongst ϵ -DP mechanisms.



- If adversary can repeat query many times...
- Average of results will be true answer.
- In practice, systems must manage a "privacy budget"

```
import numpy.random
def laplace_mechanism(val, sensitivity, epsilon):
    noise = numpy.random.laplace(0.0, scale=sensitivity/epsilon)
    return val + noise
```

• Numeric variables above are *floating point*. Not all numbers are representable.

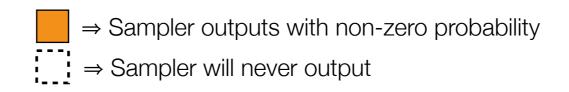
On Significance of the Least Significant Bits For Differential Privacy Ilya Mironov

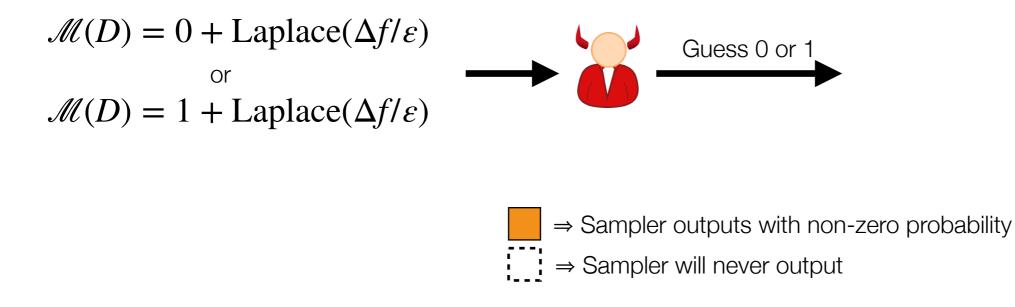
Attack setting:

- Adversary knows f(D) is either 0 or 1
- Adversary gets to see $\mathcal{M}(D) = f(D) + \text{Laplace}(\Delta f/\varepsilon)$
- Adversary tries to guess f(D)
- Adversary should do no better at guessing f(D) than is allowed by ε -DP

Key insight: Most Laplace samplers do not output every possible floating point. Some numbers will *never* be output.

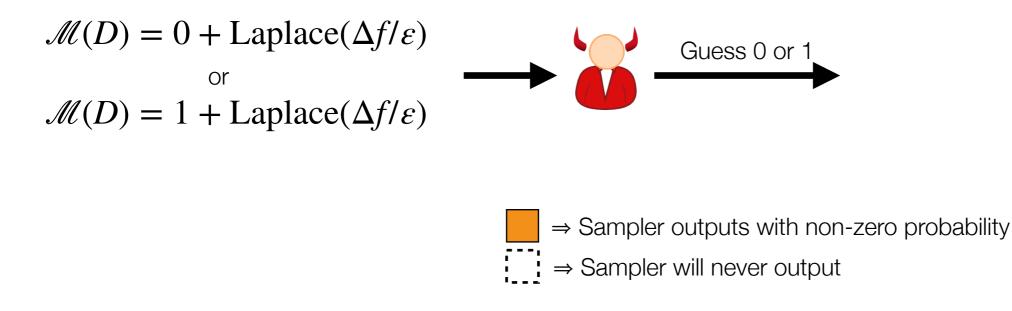
Representable floating point numbers:





Possible outputs when f(D) = 0 (i.e. $\mathcal{M}(D) = \text{Laplace}(\Delta f/\varepsilon)$):

Possible outputs when f(D) = 1 (i.e. $\mathcal{M}(D) = 1 + \text{Laplace}(\Delta f/\varepsilon)$):



Possible outputs when f(D) = 0 (i.e. $\mathcal{M}(D) = \text{Laplace}(\Delta f/\varepsilon)$):

Possible outputs when f(D) = 1 (i.e. $\mathcal{M}(D) = 1 + \text{Laplace}(\Delta f/\varepsilon)$):

 \Rightarrow "Smoking gun" samples that would only be output in one case.

The End