
David Cash and  Blase Ur

Introduction to Blockchains 
and Bitcoin


CMSC 23200/33250, Winter 2022

University of Chicago



This Lecture: Blockchains and Cryptocurrencies

1. How blockchains like Bitcoin work


2. Security of cryptocurrencies


3. Privacy of cryptocurrencies


4. Who benefits? Who is harmed?



The Bitcoin Story

- 2008: An anonymous paper and prototype posted

- 2008-2017: Bitcoin grows in popularity, reaching unbelievable highs

- Since: Even crazier highs and volatility



Bitcoin Price (in USD) Over Time



Cryptocurrencies Today



Early Cryptocurrency: ECash



DigiCash Inc and ECash’s Rise and Fall in the 1990s

“As the Web grew, the average level of 
sophistication of users dropped. It was hard to 
explain the importance of privacy to them.” 


— David Chaum, 1999

(1994)



A Proto-Bitcoin: DCash, The Desert Island Currency



A Proto-Bitcoin: DCash, The Desert Island Currency

TranID From To Amount

1 Ben Blase 1

2 David Blase 2

3 Ben David 3

4 Blase David 6

5 Ben David 2

… … … …

Initialization: Ben, Blase, and David all get 5 DCash coins

Transaction history implicitly represents how much money each person has.



Another Threat: Ledger Integrity Violations

TranID From To Amount

1 Ben Blase 1

2 David Blase 2

3 Ben David 3

4 Blase David 6

5 Ben David 1

6 David Ben 8

Adding/deleting unauthorized transactions amounts to stealing money.



Minting DCash

TranID From To Amount

1 Ben Blase 1

2 David Blase 2

3 Ben David 3

4 Blase David 6

5 Ben David 1

6 Ben 1

New DCash coins created via transactions with blank “From:”

Total supply of 
coins increases!



Definition. A digital signature scheme consists of three algorithms 
Kg, Sign, and Verify 
 
- Key generation algorithm Kg, takes no input and outputs a 

(random) public-verification-key/secret-signing key pair (VK,SK)  

- Signing algorithm Sign, takes input the secret key SK and a 
message M, outputs “signature” σ←Sign(SK,M)  

- Verification algorithm Verify, takes input the public key VK, a 
message M, a signature σ, and outputs ACCEPT/REJECT


 Verify(VK,M,σ)=ACCEPT/REJECT

Refresher: Digital Signatures



Digital Signatures for More Secure & Private Ledgers

TranID From To Amount Signature

1 88f01e… 16823a… 1 91a001…

2 5e7843… 16823a… 2 2c3118…

3 88f01e… 5e7843… 3 7623a6…

4 16823a… 5e7843… 6 987234…

5 88f01e… 5e7843… 1 234b98…

Initialization: Ben, Blase, and David all generate keys for digital signatures

David’s verification key: VKdavid = 5e7843…
Ben’s verification key: VKben = 88f01e…
Blase’s verification key: VKblase = 16823a… Ben signs 

transaction row



Digital Signatures for More Secure & Private Ledgers

TranID From To Amount Signature

1 88f01e… 16823a… 1 91a001…

2 5e7843… 16823a… 2 2c3118…

3 88f01e… 5e7843… 3 7623a6…

4 16823a… 5e7843… 6 987234…

5 88f01e… 5e7843… 1 234b98…

Initialization: Ben, Blase, and David all generate keys for digital signatures

David’s verification key: VKdavid = 5e7843…
Ben’s verification key: VKben = 88f01e…
Blase’s verification key: VKblase = 16823a… David signs 

transaction row, plus 
entire history (prevents 

reordering)



Digital Signatures for More Secure & Private Ledgers

TranID From To Amount Signature

1 88f01e… 16823a… 1 91a001…

2 5e7843… 16823a… 2 2c3118…

3 88f01e… 5e7843… 3 7623a6…

4 16823a… 5e7843… 6 987234…

5 88f01e… 5e7843… 1 234b98…

Initialization: Ben, Blase, and David all generate keys for digital signatures

- Transactions can be added by anyone since signatures can be checked

- Anonymous… sort of

David’s verification key: VKdavid = 5e7843…
Ben’s verification key: VKben = 88f01e…
Blase’s verification key: VKblase = 16823a…



Tool for Distributed Ledgers: Blockchains

Genesis(no prev)

<data>

H(prev)= 8912… H(prev)= 443e… H(prev)= 7621…

<data> <data> <data>

- Can add blocks easily — Just hash prev.

- If we know the last hash (7612…) then we can if data was changed in any prior 

block.

- That’s it! The big insight is in how to use blockchains.

- Suppose <data> are divided in blocks



Moving DCash “To the Blockchain”: Block Data Format

H(prev)= 8912…

from to amount sig

4ecd 6678 7 634e

0fda 2529 2 d555

2529 3ff8 1 9982

<previous block>



Moving DCash “To the Blockchain”: The Details

Initialization:

- Step one: Choose an authority to manage chain. I choose me.

- Step two: Create genesis block that creates coins via sender-less transactions

No hash (genesis block)

from to amount sig

⟂ 6678 1000 634e

Operation thereafter:

- Everyone sends signed transactions to authority, until block is full

- When block is full, authority publishes next block

- Everyone can check validity of transactions (signed + account balances)

H(prev)= 8912…

from to amount sig

6678 7283 7 634e

6678 2529 2 d555

6678 3ff8 1 9982

….



Hypothetical operation:

- Everyone broadcasts signed transactions to P2P network, which rebroadcasts

- Every so often, an angel randomly picks someone to be leader for the block

- That leader adds block (decides which transactions are included)

- Everyone checks validity of new block of transactions (signed + acct balances)

DCash with an Angel instead of an Authority

Broadcast:
6678→7283, amt:7, sig:634e

Broadcast:
5742→ec73, amt:1, sig:8675

H(prev)= 8912…

from to amount sig

5742 ec73 1 8675

6678 7283 7 634e

Broadcast:



Tool to Implement the Angel: Proofs of Work
- Proof of Work: A problem that is fairly hard to solve, but not too hard.

- Uses a cryptographic hash function H (e.g. SHA256)

Hardness parameter: Integer k

Input: string X
Output: string C such that H(X,C) starts with k zeros

Canonical algorithm: On input X:

For C = 0,1,2,…
If H(X,C) starts with k zeros: 
Output C

- With a secure hash function, best algorithm is the canonical algorithm

- Canonical algorithm evaluates hash 2k times on average



Proofs of Work with Blockchains
- Everyone agrees on value of h = H(latest-blk)

- Each person concats h and their ID to form X: X = h||ID 
- Each person tries to solve POW with their X

- First to solve is the leader, and adds block

For C = 0,1,2,…
If H(X,C) starts w/ k 0’s: 
Output C

For C = 0,1,2,…
If H(X,C) starts w/ k 0’s: 
Output C

For C = 0,1,2,…
If H(X,C) starts w/ k 0’s: 
Output C

I win! My 
ID=VK=7898,

C=898

H(prev)= 8912…

from to amount sig

5742 ec73 1 8675

6678 7283 7 634e

Broadcast:



But why do the POWs?

For C = 0,1,2,…
If H(X,C) starts w/ k 0’s: 
Output C

For C = 0,1,2,…
If H(X,C) starts w/ k 0’s: 
Output C

For C = 0,1,2,…
If H(X,C) starts w/ k 0’s: 
Output C

This POW is slowing down my 
computer… I’ll let the others do the 

work….



Incentivizing POWs for the Blockchain

For C = 0,1,2,…
If H(X,C) starts w/ k 0’s: 
Output C

For C = 0,1,2,…
If H(X,C) starts w/ k 0’s: 
Output C

For C = 0,1,2,…
If H(X,C) starts w/ k 0’s: 
Output C

- Pay the winner, in the form of newly-minted coins

- This is called “mining”

- Also: Transactions include tips for whoever mines block

I win! My 
ID=VK=7898,

C=898

Broadcast:

H(prev)=8912

from to amount sig

5742 ec73 1 8675

6678 7283 7 634e

⟂ 7898 1 ⟂

MinerID=7898; C=898 



The DCash Blockchain, So Far

1. Digital version of ledger; Accounts defined by history


2. Genesis block gave chosen group a pile of coins


3. Transactions signed by senders, aggregated into blocks


4. Blocks added by whoever wins POW game


5. Participants incentivized via mining



Forking in the Blockchain

For C = 0,1,2,…
If H(X,C) starts w/ k 0’s: 
Output C

For C = 0,1,2,…
If H(X,C) starts w/ k 0’s: 
Output C

For C = 0,1,2,…
If H(X,C) starts w/ k 0’s: 
Output C

I win! My 
ID=VK=7898,

C=898

I win! My 
ID=VK=fc91,

C=771

Broadcast:

H(prev)=8912

from to amount sig

5742 ec73 1 8675

6678 7283 7 634e

⟂ 7898 1 ⟂

MinerID=7898; C=898 

Broadcast:

H(prev)=8912

from to amount sig

5742 ec73 1 8675

6678 7283 7 634e

⟂ fc91 1 ⟂

MinerID=fc91; C=771 

This is awkward…



Forking in the Blockchain

- Other parties accept whichever block they hear about first

- … But parts of the network will accept different blocks



Forking in the Blockchain

- Blockchain network is in a “forked” state

- Resolution: Any node will switch to the longest chain it has seen



Implication: The Power to Re-write History

- Suppose one party (David) can mine faster than the rest of the network
Step 1: Buy bananas from Blase on main fork. 

Step 2: Eat bananas.

Step 3: Mine a fork longer than main fork. Omit 
     banana transaction.

Step 4: Announce longer fork, switching network.

- When network switches to my fork, the banana transaction disappears.

- Free bananas! (Sorry Blase, see Step 2)

By some theories, such an attack requires 51% of total compute power.  
This has been disputed (both higher and lower).





Blockchain Mining
- Current reward for mining a block is:


- POW hardness adjusted to control transaction rate


- Most compute power is in “Mining Pools”


- Currently, Bitcoin mining uses amount of electricity similar to the entire 
country of Bangladesh (by one estimate)

About $245,000 (6.25 BTC)



One major omitted detail: Bitcoin Transactions

- My description of transactions is correct in spirit, but highly inefficient


- How to check if transaction is valid? (Re-run entire history!)


- Blockchains actually tie transactions to specific previous transactions


- Each transaction takes an input one or more “unspent transaction outputs” 
(UTXOs), and produces one more UTXOs





Zcash: Privacy via Zero-Knowledge Proofs

- If you can connect a Bitcoin public key to a person, then you can see 
their entire transaction history


- Zcash is an altcoin that addresses this:


- When adding a block, network doesn’t depend on blockchain history 
to check validity


- Instead, you give a zero-knowledge proof that your transaction is 
valid, without revealing why



Ethereum and “Smart Contracts”

- In a simple blockchain, “Transactions” are just transfer amounts


- But instead one include scripts in “Transactions”, for example:


- “Transfer 2 to Ben on Jan 1, 2019”


- “Transfer 3 to Blase if the temperature is above freezing tomorrow”


- “Transfer 1 to David if he sends software with hash=h to Ben by tonight”


- Blockchain history is still verifiable, so script rules are enforced by network.



The Ethereum DAO

- Smartcontracts are code. They take inputs and produce outputs.

- Smartcontracts are “authoritative”: Their output is correct by definition.

- What could go wrong?

- “The DAO” is a smart contract that allows transfers into a fund, and then 
voting for how to invest the fund



The DAO Hack

- Bug in the smartcontract code allowed hacker to transfer money out

- Hacker would have stolen more, but whitehats noticed and also exploited 

flaw, saving around $150M more from being stolen



The Fork (July 2016)
- Solution: Introduce a new smartcontract that undoes the theft, and get 

everyone to choose the fork including this smartcontract.

- Not allowed under the original rules; Some (10%) voted against the fork.

- Arguably undermines the point of smartcontracts (i.e. “Code is law.”)

$112 USD $4 USD



Other Application of Bitcoin: Buying Drugs

- Silk Road was online market for drugs and other illegal products


- Shut down in 2013, owner convicted and given life sentence


- Bitcoins confiscated by FBI and auctioned off for $48M (worth $614M today)



Other Application of Bitcoin: Ransomware



The End


