MapReduce

What do we use distributed systems
for?

Distributed storage systems
— NFS, AFS, GFS

Distributed computation framework
— Mapreduce, DryadLINQ

Key techniques
— Partition & Replication

Key concerns
— Fault tolerance

Overview

* Goal: ease the processing and generating of large
data sets

* Aprogrammi
—Wey—value =» intermediateKey-values)
— %Lgroup and aggregate)
* Arun-time system
— Data partition
— Task scheduling

— Failure handling
— Communication

Programming model

* map (=7 @
* Input type: <k (O—> @ >O\>\D
. e: list of <intermedi al
e reduce
/
type: <(j ediate) kg, & list of values>

e Output typef <key, yalu

e The overallinpoe™
— A set of <key, value>

* The overall output

— A set of <(intermediate) key, value> ~

Example: word count

* Mmap
* Input type: <key, value>
e Output type: list of <intermediate key, value>

e reduce

* Input type: <(intermediate) key, a list of values>
e Output type: <key, value>

AQ([O (o’o&*\/)‘/
/ér
—
tllo .\ Ty
oo LA | 1S
gI. ' e
2
hello

\/ NVLo/
’ Ly
f / v S]
O~)
%’W , a |

Parallelization

L'Data parallelism

* Task parallelism

* Pipeline paraIIellsm

Example 1

* Word counting
— Input (a set of document)
— Output (a list of <word, #cnt>)

* map (string doc-name, string doc)

* reduce (,)

How to partition/parallelize the work?

Partition deta!s

000 —[(.44 .,
OOa W’)izgrS\"

How many mappers? (/) |

7 (D

How many reducers?

When to start a reducer?

Who manage-at-these?

| 20 VW"’??f/S

//u

/<)

What does the master do?

* Task =2 idle/in-progress/completed
* Task =>worker machine
* |Intermediate results locations (pushed to R)

split O

split 1

Splil 2 (3) read

split 3

split 4

Run-time flow (1)

e Step 1: split data to M (16 MB—64MB) pieces
e Step 2: start R+M+1 Processes

e Step 3: map worker works

— Where are the results of a map worker?

— Should the result be partitioned? How?

Run-time flow (2)

e Step 4: reduce worker works
— How to get the input?
— Preprocessing
— Reduce
— Where is the output?

e Step 5: master contacts the user
— Where is the output?

Performance details

How to schedule for good data locality?
How to partition to achieve good load balance?
Could the master become a bottleneck?

What if some nodes are extremely slow?
— Straggler, Backup execution

M, R, worker: 200,000; 5,000; 2,000

Fault tolerance details

e Worker failure
— How to detect it?

— What about finished map/reduce tasks on that
worker?

— What about on-going map/reduce tasks on that
worker?

e Master failure

Other examples

Distributed grep (l: one or multiple docs)
Count of URL access frequency (I: URL log)

Reverse web-link graph
— Webpages =» <target, list(source)>

Distributed sort
— Records =»sorted records

What is special about this
programming model?

 What is the relationship between it as parallel
computation?

— Easy

— Functional programming model (no side effect)
— Easy for recovery (reexecution)

— Only for data parallelism

* Questions
— How to handle iterative job?
— How to handle non-commutative, non-associative job?
— What if map/reduce is non-deterministic?

Summary

* The programming model
* The run-time system

* How load balance, scheduling, failure
tolerance ... are transparently achieved

