
MapReduce



What do we use distributed systems 
for?

• Distributed storage systems
– NFS, AFS, GFS

• Distributed computation framework
– Mapreduce, DryadLINQ

• Key techniques
– Partition & Replication

• Key concerns
– Fault tolerance



Overview 

• Goal: ease the processing and generating of large 
data sets

• A programming model 
– Map (key-value ➔ intermediateKey-values)
– Reduce (group and aggregate)

• A run-time system
– Data partition
– Task scheduling
– Failure handling
– Communication



Programming model

• map
• Input type: <key, value>

• Output type: list of <intermediate key, value>

• reduce
• Input type: <(intermediate) key, a list of values>

• Output type: <key, value>

• The overall input
– A set of <key, value>

• The overall output 
– A set of <(intermediate) key, value>



Example: word count

• map
• Input type: <key, value>

• Output type: list of <intermediate key, value>

• reduce
• Input type: <(intermediate) key, a list of values>

• Output type: <key, value>





Parallelization

• Data parallelism

• Task parallelism

• Pipeline parallelism



Example 1

• Word counting

– Input (a set of document)

– Output (a list of <word, #cnt>)

• map (string doc-name, string doc)

• reduce (,)



How to partition/parallelize the work?



Partition details

• How many mappers?

• How many reducers?

• When to start a reducer?

• Who manage all these?



What does the master do?

• Task → idle/in-progress/completed

• Task →worker machine

• Intermediate results locations (pushed to R)



Run-time flow (1)

• Step 1: split data to M (16MB—64MB) pieces

• Step 2: start R+M+1 Processes

• Step 3: map worker works

– Where are the results of a map worker?

– Should the result be partitioned? How?



Run-time flow (2)

• Step 4: reduce worker works

– How to get the input?

– Preprocessing

– Reduce 

– Where is the output?

• Step 5: master contacts the user

– Where is the output?



Performance details

• How to schedule for good data locality?

• How to partition to achieve good load balance?

• Could the master become a bottleneck?

• What if some nodes are extremely slow?

– Straggler, Backup execution

• M, R, worker: 200,000; 5,000; 2,000



Fault tolerance details

• Worker failure

– How to detect it?

– What about finished map/reduce tasks on that 
worker?

– What about on-going map/reduce tasks on that 
worker?

• Master failure



Other examples

• Distributed grep (I: one or multiple docs)

• Count of URL access frequency (I: URL log)

• Reverse web-link graph

– Webpages ➔ <target, list(source)>

• Distributed sort

– Records ➔sorted records



What is special about this 
programming model?

• What is the relationship between it as parallel 
computation?
– Easy

– Functional programming model (no side effect)

– Easy for recovery (reexecution)

– Only for data parallelism

• Questions
– How to handle iterative job?

– How to handle non-commutative, non-associative job?

– What if map/reduce is non-deterministic?



Summary 

• The programming model

• The run-time system

• How load balance, scheduling, failure 
tolerance … are transparently achieved


