CMSC 14300

oooooooooo



Your Journey in CS So Far

print(“Hello, world!”) Algorithms

Variables Object-Oriented Programming

Applications

Recursive (!) Functions lists, strings, sets, dicts

$$$






0110000010111001010101 1wt JUUC 1
10160110011101111000011¢C 1
00001101110011110000011@11000000011000000
111000001111160000001000@0101110010101011g0
0011111000000011000001(@1100101010110011)g0
011100000111110000001] i Siiainininiaainte

But what really is a variable?
what really is a function?
what does CPU do exactly?
how does anything work?



CMSC 14300
Systems Programming |

oooooooooo



Today’s Plan

1. Administrivia
2. A whirlwind tour of C
3. Terminal and coding environment



Administrivia
Staff

1. Me
2. Victor (Course Coordinator)



Administrivia
143’s goals

1. Develop a deep understanding of how computers work

2. Transition from introductory programming to programming as a
professional



0110000010111001010101
10160110011101111000011¢C
0000110111001111000001

0011111000000011000001¢€
011100000111110000001] s

Application

Libraries, Modules, Algorithms

Operating System

Instruction Set Architecture

Microarchitecture

Register Transfer Level

Electricity




0110000010111001010101
10160110011101111000011¢C
0000110111001111000001

0011111000000011000001¢€
011100000111110000001] s

Application

Libraries, Modules, Algorithms

Operating System

Instruction Set Architecture

Microarchitecture

Register Transfer Level

Electricity




0110000010111001010101
10160110011101111000011¢C
0000110111001111000001

0011111000000011000001¢€
011100000111110000001] s

Application

Libraries, Modules, Algorithms

Operating System

Instruction Set Architecture

Microarchitecture

Register Transfer Level

Electricity




0110000010111001010101
10160110011101111000011¢C
0000110111001111000001

0011111000000011000001¢€
011100000111110000001] s

Application

Libraries, Modules, Algorithms

Operating System

Instruction Set Architecture

Microarchitecture

Register Transfer Level

Electricity




Administrivia

Grading
Homework 60%
Quiz 15%
Final 25%




Administrivia

Homework

* Weekly assignments, starting today
* Due every Monday 11:59:59pm (generally)
* |ate policy:

e 4 320 minutes of late time

* every minute past, 0.003% penalty

* emergency, contact your advisor



Administrivia

Quiz and Exam

* Quiz: Monday, July 10, 6:00pm-7:20pm.
 Exam: Thursday, August 3, 6:00pm-7:20pm.



Administrivia
HELP!

* Resource page on course website

e Ed
* Details: don't just say “X doesn't work™
* No screenshots or giant code block

* Office hours:
 [BD, do the survey

 Emall me



Administrivia

Advice

* Practice, practice, practice...
o Start early
e coding is fun but fighting for hours is not
 Write a little, test a little
* you will make mistakes, make them easy to find
* et me know your feedback; I'm still experimenting



Administrivia

Academic Dishonesty

* Do not copy code ...it's very obvious
* Do not show your solution

e ...o0nline

e ...toothers

* use private Ed post If you're unsure
* Discuss concept ok, code no
* Document your collaboration



Administrivia

Accessibility

e Contact SDS soon
e Victor



A Whirlwind Tour of C



Why C?

* C isthe lingua franca of computer programming

e unix is written in C

* many, many languages have C-like syntax

* C helps you understand how computers work

[ ] A a A a a A AVTAFra ATA AVYALVY, AlAAEA
7 L/ o vV \J U AV W ./ W o \o/ 7 V \

* C is very fast, good for serious applications



The Anatomy of C

#include <stdio.h>
vold say hello(void);

int mailn (void)

{
say hello();

return 0O;

J

vold say hello(void)
{

printf ("Hello, world!\n");
J



The Anatomy of C

#include <stdio.h> <— Directives
void say hello(void); <— Declarations

int main(void)

{ ]
say _hello(); <— Declarations

return :

J

vold say hello(void)

{ <— Declarations
printf ("Hello, world!\n");
}



The Anatomy of C

A C program is a list of declarations and directives.

* Declarations tell us how to interpret names.

 say hello and main are functions.

» Directives (beginning with #) tell compiler to do stuff.

e #include <stdio.h> tells compiler to import the standard I/O library.’




The Anatomy of C

#include <stdio.h>

vold say hello(void);

* A special declaration is called

int main (void)

{ maln
say hello();
return 0;  No top-level code — all code
) IS In some functions, which are
void say hello (void) .callled by main, directly or
{ - Indirectly
printf ("Hello, world!\n");
} * Functions can call everything

declared above, including itself



The Anatomy of C

#include <stdio.h>

vold say hello(void);

* A function signature specifies

int main (void)

{ Its argument types and return
say hello(); types — write void if none
return 0;

} o A function is declared if the

signature is followed by ;

vold say hello(void)

{ .
printf ("Hello, world!\n"); e A function is defined if it Is

} followed by a block { .. }



The Anatomy of C

#include <stdio.h>

int factorial (int x); <— Argument type: int
AAN Return type: int
int main (void)

{

int aj;

a = 20;

int fact a = factorial(a);

printf ("factorial (%3d) = %d\n", a, fact a);

return 0;

J

int factorial (1nt X)

{
1f (x == 0) {
return |;

J

return x * factorial(x - 1);



The Anatomy of C

int mailn (void)

{

<— tell compiler variable a of type int exists

int a;

a = 20;

int fact a = factorial(a);

printf ("factorial (%d) = %d\n", a, fact a);

return 0;

J

e Ablock { .. 1} consists of a list of statements. Each statement ends with ;

e A statement can declare a variable



The Anatomy of C

int main (void)
{
int a;
a = ’
int fact a = factorial(a);
printf ("factorial (%d) = %d\n", a, fact a);

<—— write 20 to a

return 0;

}
e Ablock { .. 1} consists of a list of statements. Each statement ends with ;

e A statement can declare a variable
' assign a variable



The Anatomy of C

int mailn (void)

{

int a;

a = 20;

int fact a = factorial (a); <— fact a exists, call function, write result
printf ("factorial (3d) = sd\n", a, fact a);

return 0;

J

e Ablock { .. 1} consists of a list of statements. Each statement ends with ;

e A statement can declare a variable
' assign a variable



The Anatomy of C

int mailn (void)

{

int a;
a = 20;
int fact a = factorial(a);
printf ("factorial (sd) = sd\n", a, fact a);
A—— call a function to print
return 0;
}
e Ablock { .. } consists of a list of statements. Each statement ends with ;

e A statement can declare a variable
' assign a variable
. call a function



The Anatomy of C

int mailn (void)

{

int a;
a = 20;
int fact a = factorial(a);
printf ("factorial (sd) = sd\n", a, fact a);
return 0; <—- exit main
}
e Ablock { .. 1} consists of a list of statements. Each statement ends with ;

e A statement can declare a variable
' assign a variable
. call a function



Control-flow Compared

If
1f (x == 0) { 1f x == 0O:
do stuff(); do stuff()
} else 1f (x == 1) { elif x == 1:
do stuff() do stuff()
} else { else:
do something else() ; do something else ()

J

C Python



Control-flow Compared
While

while (x != 0) { while x == 0:
do stuff(); do stuff()
J

C Python



Control-flow Compared

For
for (int 1 = 0; 1 < 200; 1 += 1) { for x 1in iterator:

do stuff (1) do stuff (x)
}

Equivalent Equivalent

int 1 = 0; X = the first element
while (1 < 200) { while x.has more () :

do stuff (1) do stuff (x)

1 += 1; X = next (x)

C Python



Control-flow Compared

Return, Continue, Break

while (x != 0) { while x != 0:
return x; return x
continue; continue

break; break



 C doesn’t have Boolean (!)

e any non-zero value Is considered true, and zero Is £

—

e €.0. 1f

(42)

Boolean Compared

{ b —> 1f (true) { }
C Python
X && VY Xx and vy
X ll Y X OrXr VY

not x

]l se



How to Run C

Review: how does Python work?

$ python3 hello.py




How to Run C

Review: how does Python work?

$ python3 hello.py




How to Run C

Review: how does Python work?

$ python3 hello.py

open hello.py




How to Run C

Review: how does Python work?

$ python3 hello.py

open hello.py




How to Run C

Review: how does Python work?

$ python3 hello.py



How to Run C

Review: how does Python work?

$ python3 hello.py

ok. remembered x




How to Run C

Review: how does Python work?

$ python3 hello.py



How to Run C

Review: how does Python work?

$ python3 hello.py



How to Run C

Review: how does Python work?

$ python3 hello.py

ok. looking up x




How to Run C

Review: how does Python work?

$ python3 hello.py



How to Run C

Review: how does Python work?

$ python3 hello.py
hello



How to Run C

Review: how does Python work?

$ python3 hello.py
hello



How to Run C

Review: how does Python work?

$ python3 hello.py
hello



How to Run C

Review: how does Python work?

$ python3 hello.py
hello



How to Run C

Review: how does Python work?

$ python3 hello.py
hello



How to Run C

Review: how does Python work?

$ python3 hello.py
hello

S




How to Run C

Review: how does Python work?

* [here Is a program that reads your Python script, and executes line by line

* This program is called Python interpreter



How to Run C

How about C?



How to Run C

How about C?

$ clang -o hello hello.c




How to Run C

How about C?

$ clang -o hello hello.c




How to Run C

How about C?

$ clang -o hello hello.c

open hello.c



How to Run C

How about C?

$ clang -o hello hello.c

open hello.c



How to Run C

How about C?

$ clang -o hello hello.c

read the entire file



How to Run C

#include <stdio.h>

HOW abOUt C? int main (void)

{
printf (Y“hello”) ;

return 0;

}

$ clang -o hello hello.c

read the entire file




How to Run C

How about C?

$ clang -o hello hello.c

#include <stdio.h>
int main (void)
{
printf (Y“hello”) ;
return O;

}

Ok, translating..




How to Run C

How about C?

$ clang -o hello hello.c

#include <stdio.h>
int main (void)
{
printf (Y“hello”) ;
return O;

}

Ok, translating..




How to Run C

How about C?

$ clang -o hello hello.c

#include <stdio.h>
int main (void)
{
printf (Y“hello”) ;
return O;

}

Ok, translating..




How to Run C

#include <stdio.h>

HOW abOUt C? int main (void)

{
printf (“hello”);

return O;

}

$ clang -o hello hello.c




How to Run C

How about C?

$ clang -o hello hello.c
$




How to Run C

How about C?

$ clang -o hello hello.c
S ./hello




How to Run C

How about C?

$ clang -o hello hello.c
S ./hello




How to Run C

How about C?

$ clang -o hello hello.c
S ./hello
hello




How to Run C

How about C?

$ clang -o hello hello.c
S ./hello
hello




How to Run C

How about C?

$ clang -o hello hello.c
S ./hello
hello

S




How to Run C

How about C?

$ clang -o hello hello.c
S ./hello

hello

S ./hello




How to Run C

How about C?

$ clang -o hello hello.c
S ./hello

hello

S ./hello




How to Run C

How about C?

$ clang -o hello hello.c

S ./hello
hello
S ./hello
hello




How to Run C

How about C?

$ clang -o hello hello.c

S ./hello
hello
S ./hello
hello




How to Run C

How about C?

$ clang -o hello hello.c

S ./hello
hello
S ./hello
hello

S




How to Run C

How about C?

e clang translates your source code (text) into a file containing machine
iInstructions

* to “compile the source code into an executable”

* you have a new executable; running that executable doesn’t involve clang
anymore

e clang Is a compiler



To-do

* Fill out the survey (if you haven’t already)
 Read the homepage of the course website
» (Get familiar with the Resources page (also open to suggestions)

» HWO is out, due next Tuesday



