
Byron Zhong, June 26

Lists
CS143: lecture 6

Last week in review

• Pointers: Syntax and meanings

• Stack: Frames, pass-by-value, pass-by-reference

• Heap: malloc and free

• Building structures in the heap via pointers

• Data structures!

• This week and next week
The Stack The Heap

This week's plan

• Lists

• Array Lists

• Linked Lists

• Sorting

• More general C stuff

What is a list?

• An ordered collection of elements is a list: [🍏, 🍎, 🍐, 🍊, 🍋]

• Homogeneous list: all elements have the same type

• Heterogeneous list: elements may have different type

• Ordered: 0th, 1st, 2nd, 3rd, (does not mean sorted)

• Dynamic size: can grow/shrink as needed

• What operations does a list support?

List Operations

• append

• prepend

• len

• insert_at

• remove_at

• is_empty?

• at(i)

Array as a List

Array

• Can we just use an array to implement a list?

• Almost! Arrays have a fixed size, but ...

• If it's on the stack, no luck here

• If it's on the heap, we may have some ways around this

Array
Growing an array

Th
e

H
ea

p

int *

m
a
i
n

1 2 3 4

• Create a bigger array.

Array
Growing an array

Th
e

H
ea

p

int *

m
a
i
n

1 2 3 4

• Create a bigger array.

Array
Growing an array

Th
e

H
ea

p

int *

m
a
i
n

1 2 3 4

• Create a bigger array.

• Copy the elements into the new array

1 2 3 4

Array
Growing an array

Th
e

H
ea

p

int *

m
a
i
n

1 2 3 4

• Create a bigger array.

• Copy the elements into the new array

• Reassign the pointer to point to the new array

1 2 3 4

Array
Growing an array

Th
e

H
ea

p

int *

m
a
i
n

1 2 3 4

• Create a bigger array.

• Copy the elements into the new array

• Reassign the pointer to point to the new array

• Free the old array

1 2 3 4

Array
Growing an array

Th
e

H
ea

p

int *

m
a
i
n

1 2 3 4

• Pointers serve as an indirection.

• We aren't changing the size of the array; we
are changing which array the pointers point
to.

• By changing the address of the pointer, it
seems to the user that we have changed the
size of the array.

• We create and delete memory however we
want thanks to the heap.

1 2 3 4

Array
Abstractions

Th
e

H
ea

p

int *

m
a
i
n

1 2 3 4

• Doing this repeatedly results in very messy
code.

• e.g. hw1

• Separation of concerns:

• We wrap all of this up behind some interface

• The user doesn't have to worry about any of
that -- just adding and removing elements.

1 2 3 4

Array
Demo

Th
e

H
ea

p

int *

m
a
i
n

1 2 3 4

• Let's write this together!

1 2 3 4

Understanding void *

void *
The dark side of C

• How do we usually declare a pointer?

• char *

• int *

• struct substring *

• Why do we care what the pointer is pointing to?

• To figure out how many bytes to read/write

• What if we never read/write to the memory location?

• If we just want to hold onto a pointer

void *
The dark side of C

• void * is a generic pointer. Just an address; there is no information about what
it points to.

• Can't dereference void * without casting it first.

• Can we make our array implementation generic?

