Byron Zhong, June 26

* Pointers: Syntax and meanings

o Stack: Frames, pass-by-value, pass-by-reference

e Heap: ma:

* Building structures in the heap via pointers

Last week In review

"ree

1oc and :

e Data structures!

e This week and next week

The Stack

The Heap

This week's plan

e Lists
* Array Lists
* Linked Lists
* Sorting

 More general C stuff

What is a list?

« An ordered collection of elements is a list: [, @, ©, 9, U]

» Homogeneous list: all elements have the same type

 Heterogeneous list: elements may have different type

 Ordered: Oth, 1st, 2nd, 3rd, (does not mean sorted)
 Dynamic size: can grow/shrink as needed

 What operations does a list support?

List Operations

* append

* prepend

* len

* 1nsert at
* remove at
* 1S empty?

e ot (1)

Array as a List

Array

 Can we just use an array to implement a list?
 Almost! Arrays have a fixed size, but ...
* |fit's on the stack, no luck here

* |fit's on the heap, we may have some ways around this

Array

Growing an array

* Create a bigger array.

int *

mailin

Array

Growing an array

* Create a bigger array.

int *

mailin

Array

Growing an array

* Create a bigger array.

 Copy the elements into the new array

int *

mailin

Array

Growing an array

» Create a bigger array.
 Copy the elements into the new array

* Reassign the pointer to point to the new array

int *

mailin

Array

Growing an array

» Create a bigger array.
 Copy the elements into the new array

* Reassign the pointer to point to the new array

* Free the old array

int *

mailin

Array

Growing an array

e Pointers serve as an indirection.

 We aren't changing the size of the array; we

are changing which array the pointers point
to.

* By changing the address of the pointer, it

seems to the user that we have changed the
size of the array.

 We create and delete memory however we
want thanks to the heap. int *

mailin

Array

Abstractions

* Doing this repeatedly results in very messy
code.

e e.g. hw1
e Separation of concerns:
 We wrap all of this up behind some interface

 The user doesn't have to worry about any of
that -- just adding and removing elements.

int *

mailin

Array

Demo

e |et's write this together!

int *

mailin

Understanding void *

void *
The dark side of C

« How do we usually declare a pointer?

* char *
e 1nt *
* struct substring *
* Why do we care what the pointer is pointing to?
* To figure out how many bytes to read/write
* What if we never read/write to the memory location?

* If we just want to hold onto a pointer

void *
The dark side of C

e void * Is a generic pointer. Just an address; there is no information about what
It points to.

 Can't dereference void * without casting it first.

 Can we make our array implementation generic?

