Linked Lists

Byron Zhong, June 27



Array

Another way to grow the size of the array..

 What if we store a pointer at the end of the array

» ...when the array is filled up, we direct it to
somewhere else.

int *




Array

Another way to grow the size of the array..

 What if we store a pointer at the end of the array

» ...when the array is filled up, we direct it to
somewhere else.

int *




Array

Another way to grow the size of the array..

 What if we store a pointer at the end of the array

» ...when the array is filled up, we direct it to
somewhere else.

int *




Array

Another way to grow the size of the array..

 What if we store a pointer at the end of the array

» ...when the array is filled up, we direct it to
somewhere else.

int *




Array

Another way to grow the size of the array..

 What if we store a pointer at the end of the array

» ...when the array is filled up, we direct it to
somewhere else.

int *




Array

Another way to grow the size of the array..

 What if we store a pointer at the end of the array

» ...when the array is filled up, we direct it to
somewhere else.

int *




Array

Another way to grow the size of the array..

 What if we store a pointer at the end of the array

» ...when the array is filled up, we direct it to
somewhere else.

int *




Array

Another way to grow the size of the array..

 What if we store a pointer at the end of the array

» ...when the array is filled up, we direct it to
somewhere else.

 (Good idea”?
 No copying needed when we grow

 Removing elements at the front is also less
costly

 But how do you index? Say | want 10-th int *
element




Array

Another way to grow the size of the array..

* Also, how many elements should we allocate per
small array?

« How about just one?

int *




Linked Lists

A linked list consists of nodes
A node consists of
* A piece of data

e A pointer to the next node

data

ptr

struct llist {

}r

int data;
struct 1llist *next;



Linked Lists

A linked list consists of nodes

e A node consists of

* A piece of data

e A pointer to the next node

* Alinked list is a chain (linear series) of nodes

"alice"

"caro

"bok%/
pt

ptr

lvdav/
pt




Linked Lists

 Each node could be stored anywhere in memory

* Unlike arrays, data is contiguous

 Each node keeps track of the next node

"alice"

"bok%/

pt

"caro

ptr

lvdav/
pt




Linked Lists

 Each node could be stored anywhere in memory
* Unlike arrays, data is contiguous

 Each node keeps track of the next node

* The user only needs to keep track of the first node
"alice" "bok%/ "carol/ "daV/
ptr pt ptr pt




Linked Lists

 Each node could be stored anywhere in memory
* Unlike arrays, data is contiguous
 Each node keeps track of the next node

* The user only needs to keep track of the first node

e |f we know the first node—wecan reach the entire list

. éus’t'follow the links

"alice" "boy/ ,,carol/ "dav/
ptr pt ptr pt




Linked Lists

 The end of the list is signaled by the special pointer NULL

« NULL Is a pointer that points nowhere

"alice"

"bok%/

pt

"caro

ptr

NULL
" daV/




Linked Lists

e A linked list can be either:
 NULL (empty)

* A node with data and a pointer to a linked list

e R rsion

1ist* although we wouldn't actually implement the operators recursively

"bok%/

pt

"caro

ptr

pt

NULL
" daV/




Linked Lists

prepend

e \WWe want to add "Olivia" to be front.

list

"bok%/

pt

"caro

NULL
"daV/




Linked Lists

prepend

e \WWe want to add "Olivia" to be front.

1.

list

malloc a node with data "Olivia"

"bok%/
pt

"caro

ptr

NULL
"daV/
pt




Linked Lists

prepend

e \WWe want to add "Olivia" to be front.

list

2. Set the Olivia's pointer to the front

"bok%/

pt

"caro

ptr

NULL
"daV/




Linked Lists

prepend

e \WWe want to add "Olivia" to be front.

ist

"oivia"

(\ptr

"alice"

3. Update the front pointer to point to "Olivia"

ptr

"bok%/

pt

"caro

ptr

NULL
" daV/




Linked Lists

prepend

* Prepending in a linked list is very efficient

» Remember array needs to shift everything by one

« The longer the list, the slower prepending is. O(n)

* Linked list does the same amount of work regardless of how long the list is.

O(1)



Linked Lists

len ()

 What if we want to find the length of the list?

list

"bok%/

pt

"caro

ptr

NULL
"daV/




Linked Lists

len ()

 What if we want to find the length of the list?

« Just following the links until we reach NULL, and count along the way

list

"bok%/

pt

"caro

ptr

pt

NULL
"daV/




Linked Lists

len ()

int llist len(struct llist *list)

{

list

struct 1llist *curr = list;
int len = 0;
while (curr != NULL) {

len += 1;

CuUurr

J

return len;

N

"alice"

ptr

curr—->next;

"bob "

"carol"

ptr

"dave"

NULL



Linked Lists

len ()

int llist len(struct llist *list)

{

list

struct 1llist *curr = list;
int len = 0;
while (curr != NULL) {

len += 1;

CuUurr

}

return le

"alice"

ptr

curr—->next:

"carol"

ptr

curr

"dave"

NULL



Linked Lists

len ()

int llist len(struct llist *list)

{

list

struct 1llist *curr = list;
int len = 0;
while (curr != NULL) {

len += 1;

CuUurr

}

return le

"alice"

ptr

curr—->next:

"carol"

ptr

curr

"dave"

NULL



Linked Lists

len ()

int llist len(struct llist *list)

{

list

struct 1llist *curr = list;
int len = 0;
while (curr != NULL) {

len += 1;

CuUurr

}

return le

"alice"

ptr

curr—->next:

"carol"

ptr

curr

"dave"

NULL



Linked Lists

len ()

int llist len(struct llist *list)

{

list

struct 1llist *curr = list;
int len = 0;
while (curr != NULL) {

len += 1;

CuUurr

J

return len;

N

"alice"

ptr

curr—->next;

"bob "

"carol"

ptr

curr

"dave"

NULL



Linked Lists

len ()

int llist len(struct llist *list)

{

list

struct 1llist *curr = list;
int len = 0;
while (curr != NULL) {

len += 1;

CuUurr

J

return len;

N

"alice"

ptr

curr—->next;

"bob "

"carol"

ptr

curr

"dave"

NULL



Linked Lists

len ()

int llist len(struct llist *list)

{

list

struct 1llist *curr = list;
int len = 0;
while (curr != NULL) {

len += 1;

CuUurr

J

return len;

N

"alice"

ptr

curr—->next;

"bob "

"carol"

ptr

curr

"dave"

NULL



Linked Lists

len ()

int llist len(struct llist *list)

{

list

struct 1llist *curr = list;
int len = 0;
while (curr != NULL) {

len += 1;

CuUurr

J

return len;

N

"alice"

ptr

curr—->next;

"bob "

"carol"

ptr

curr

"dave"

NULL



Linked Lists

len ()

int llist len(struct llist *list)

{

list

struct 1llist *curr = list;
int len = 0;
while (curr != NULL) {

len += 1;

CuUurr

J

return len;

N

"alice"

ptr

curr—->next;

"bob "

"carol"

ptr

curr

"dave"

NULL



Linked Lists

len ()

int llist len(struct llist *list)

{

list

struct 1llist *curr = list;
int len = 0;
while (curr != NULL) {

len += 1;

CuUurr

J

return len;

N

"alice"

ptr

curr—->next;

"bob "

"carol"

ptr

curr

"dave"

NULL



Linked Lists

len ()

int llist len(struct llist *list)

{

list

struct 1llist *curr = list;
int len = 0;
while (curr != NULL) {

len += 1;

CuUurr

J

return len;

N

"alice"

ptr

curr—->next;

"bob "

"carol"

ptr

curr

"dave"

NULL



Linked Lists

len ()

int llist len(struct llist *list)

{

list

struct 1llist *curr = list;
int len = 0;
while (curr != NULL) {

len += 1;

CuUurr

J

return len;

N

"alice"

ptr

curr—->next;

"bob "

"carol"

ptr

curr

"dave"

NULL



Linked Lists

len ()

int llist len(struct llist *list)

{

list

struct 1llist *curr = list;
int len = 0;
while (curr != NULL) {

len += 1;

CuUurr

J

return len;

N

"alice"

ptr

curr—->next;

"bob "

"carol"

ptr

curr

"dave"

NULL



Linked Lists

len ()

int llist len(struct llist *list)

{

list

struct 1llist *curr = list;
int len = 0;
while (curr != NULL) {

len += 1;

CuUurr

J

return len;

N

"alice"

ptr

curr—->next;

"bob "

"carol"

ptr




Linked Lists

len ()

int llist len(struct llist *list)

{

list

struct 1llist *curr = list;
int len = 0;
while (curr != NULL) {

len += 1;

CuUurr

J

return len;

N

"alice"

ptr

curr—->next;

"bob "

"carol"

ptr




Linked Lists

len ()

int llist len(struct llist *list)

{

list

struct 1llist *curr = list;
int len = 0;
while (curr != NULL) {

len += 1;

CuUurr

J

return len;

N

"alice"

ptr

curr—->next;

"bob "

"carol"

ptr




Linked Lists

len ()

int llist len(struct llist *list)

{

list

int len = 0;
for (struct 1llist *curr
curr != NULL;
curr = curr->next)
len += 1;

J

return len;

N

list;

"alice"

"bob "

"carol"

ptr

ptr

"dave"

NULL



Linked Lists

len ()

int llist len(struct llist *list)

{

li;t

int len = 0;

for (struct 1llist *curr
curr != NULL;
Curr = curr-—->next,

return len;

.,

"alice"

ptr

list;

len +=

) ;

"bob "

"carol"

ptr

"dave"

NULL



Linked Lists

len () recursively

int llist len(struct llist *list)

{

list

if

J

(list NULL)
return
} else {

return

{

+ 1llist len(list->next);

"bok%/

pt

"caro

ptr

NULL
"daV/




Linked Lists
len

 Arrays have to remember the length; cannot calculate the length O(1)
* Linked lists can still keep track of the length

 Keep a counter for insert/delete

 But calculating takes O(n)



Linked Lists

append ()

e We want to add "Olivia" to the back of the list

list

"bok%/

pt

"caro

ptr

NULL
"daV/




Linked Lists

append ()

e We want to add "Olivia" to the back of the list

list

. malloc

"bok%/

pt

"caro

ptr

NULL
"daV/




Linked Lists

append ()

e We want to add "Olivia" to the back of the list

list

2. find the last node In this list

"bok%/

pt

"caro

ptr

NULL
"daV/




Linked Lists

append ()

e We want to add "Olivia" to the back of the list
2. find the last node In this list

list

"bok%/
pt

last




Linked Lists

append ()

e We want to add "Olivia" to the back of the list

list

3. set last->next

olivia

"bok%/
pt

"carol"

last

ptr

"dave"

NULL



Linked Lists

append ()

e We want to add "Olivia" to the back of the list

4. set olivia's pointer to NULL

last

"oivia"

list

P _~NULL
N <

"alice" "bOZ;/Af%////——* "carol" "dave"
ptr pt ptr P




Linked Lists

append

* Appending to list involves finding the last node
» If we know the last node, O(1)
» Finding the last node, O(n)

 How about array list?

» Finding the last node: O(1), end = start + length

e Inserting: O(1) most of the time, O(n) if unlucky



Linked Lists

remove front

list

NULL
"alice" "bob" "carol" "dave"
ptr pt ptr pt




Linked Lists

remove front

1.

list

Move the front to front->next

"alice"

ptr

"bok%/
pt

"caro

ptr

NULL
"daV/
pt




Linked Lists

remove front

2. Free the first node

list

NULL
uboy/ " carol/ " dav/
pt ptr pt




Linked Lists

remove middle

list

NULL
"alice" "bob" "carol" "dave"
ptr pt ptr pt




Linked Lists

remove middle

1. Move the previous pointer's next to current pointer's next

list

.,

"alice"

ptr

"bok%/
pt

"caro

ptr

NULL
"daV/
pt




Linked Lists

remove middle

1. Move the previous pointer's next to current pointer's next

list

.,

"alice"

ptr

"bOb "

"caro

ptr

NULL
"daV/
pt




Linked Lists

remove middle

2. Free the node

list

NULL
"alice" "Carol/ "dav/
ptr ptr pt




Linked Lists

remove last

1. Set the second to last's next pointer to NULL

list

.,

"alice"

"caro

ptr

ptr

NULL
"daV/
pt




Linked Lists

insert works in similar way

list

"olivia"

ptr

"caro

"bok%/

pt

NULL
"daV/




Linked Lists

insert works in similar way

list

"olivia"

ptr

"bOb "

"caro

NULL
"daV/




Linked Lists

insert works in similar way

list

"olivia"

ptr

"bo "

"caro

NULL
"daV/




Linked Lists

remove/insert

 Finding the index/item takes O(n)

 But if the node is found, removing does constant amount of work.

* Array always needs to shift



Linked Lists

data's type

 What's the type of the data each node carries?

e INt

e char ™

list

"bok%/

pt

"caro

ptr

NULL
"daV/




Linked Lists

data's type

 What's the type of the data each node carries?

list

* Any pointer!

"bok%/

pt

"caro

ptr

NULL
"daV/




Linked Lists

data's type

 What's the type of the data each node carries?

list

* Any pointer!

user's data

N

void *

ptr

user's data

user's data

user's data

void

J

*//
ptr

NULL



Linked Lists

data's type

 What's the type of the data each node carries? Any pointer!

* [he data structure does not manage the memory that user's data use.

list

user's data

N

void *

ptr

user's data

void *

W

user's data

user's data

=

NULL



Linked Lists

data's type

 What's the type of the data each node carries? Any pointer!

* [he data structure does not manage the memory that user's data use. The

e We call this a boxed data structure.

list

user's data

N

void *

ptr

user's data

void *

W

user Is responsible for freeing the void * pointers.

user's data

user's data

=

NULL



