
Byron Zhong, June 28

Sorting
CS143: lecture 8

i++, ++i, and Makefile

i++, ++i

• i++, looks up i, give you the value, and +1 to i.

• ++i, looks up i, +1 to i, and give you the value.

int x = 5;

printf("%d\n", x++);

printf("%d\n", ++x);

5

7

Makefile

• Makefile is comprised of rules.

• make cat

• if cat.o and readline.o have changed, do the command

• if not, do nothing

• But how do you make cat.o and readline.o?

cat: cat.o readline.o

	 clang -o cat cat.o readline.o

name dependencies

command

this is a TAB

Makefile

• Rules can contain patterns.

• To get anything .o, run the following command, depending on that .c

• make readline.o

• if readline.c has changed, do the command; otherwise, do nothing

• One rule can depend on other rules; make will figure out the order

%.o: %.c

	 clang -o $@ -c $^

$@: this rule's name

$^: the dependencies

Makefile

• You can also define variables in Makefile.

CC = clang

CFLAGS += -g -Wall -Wextra -Werror -pedantic -std=c11

LDFLAGS += -g

cat: cat.o readline.o

	 $(CC) $(LDFLAGS) -o $@ $^

%.o: %.c

	 $(CC) $(CFLAGS) -o $@ -c $^

$ to replace CC with the variable

Separate Compilation
How C is actually compiled

file1.c preprocessor compiler

linker
• removes comments

• execute the directives

• finds the files to
#include

• replace the text with
#define

• #if

assembler

• Convert the C program
into assembly

• Tokenize, parse,
optimize,

• Convert the assembly
code into machine-
readable object file

• All functions are
converted into binary

file1.c file1.s file1.o

Separate Compilation
How C is actually compiled

file1.c preprocessor compiler assembler file1.o

file2.c preprocessor compiler assembler file2.o

linker
...

...

...

• every .o file provides
some functions

• linker links all the
functions together

• finds main

./exec

Separate Compilation

• Demo

Sorting

Sorting
Putting things in order

• What do we have:

• A list of n elements

• A comparison function:

• What do we want:

• The list has all the same elements as it started with

• If , list[i] list[j]

≤

i ≤ j ≤

Sorting
Example

• Pick the smallest one and move it to the front

Sorting
Example 1 (how I do it)

• Pick the smallest one and move it to the front

Sorting
Example 1 (how I do it)

• Pick the smallest one and move it to the front

Sorting
Example 1 (how I do it)

• Pick the smallest one and move it to the front

Sorting
Example 1 (how I do it)

• Pick the smallest one and move it to the front

Sorting
Example 1 (how I do it)

• Pick the smallest one and move it to the front

Sorting
Example 1 (how I do it)

• Pick the smallest one and move it to the front

Sorting
Example 1 (how I do it)

• Pick the smallest one and move it to the front

Sorting
Example 1 (how I do it)

• Pick the smallest one and move it to the front

Sorting
Example 1 (how I do it)

• Pick the smallest one and move it to the front

Sorting
Example 1 (how I do it)

Sorting
Example 1 (how I do it): Algorithm

For i = 1 to n - 1:

 min = index of smallest in A[i + 1 : n]

 swap A[min] and A[i]

• Why swap instead of pushing things over?

• It's more efficient and we don't care about the order of the unsorted part

• This is called selection sort -- we select the one we want repeatedly.

Sorting
Example 1 (how I do it): Algorithm

For i = 1 to n - 1:

 min = index of smallest in A[i + 1 : n]

 swap A[min] and A[i]

• How many comparisons do we need to do?

•

• How many swaps?

•

(n − 1) + (n − 2) + … + 1 = n(n − 1)/2 = O(n2)

n − 1

Sorting
Example 1 (how I do it): Algorithm

For i = 1 to n - 1:

 min = index of smallest in A[i + 1 : n]

 swap A[min] and A[i]

• Everything left of the line is sorted.

• Scanning the right (unsorted) part, and putting it to the end of the left (sorted)
part.

Sorting
Example 2

• Pick the first unsorted and insert it into the right place

Sorting
Example 2

• Pick the first unsorted and insert it into the right place

Sorting
Example 2

• Pick the first unsorted and insert it into the right place

Sorting
Example 2

• Pick the first unsorted and insert it into the right place

Sorting
Example 2

• Pick the first unsorted and insert it into the right place

Sorting
Example 2

• Pick the first unsorted and insert it into the right place

Sorting
Example 2

• Pick the first unsorted and insert it into the right place

Sorting
Example 2

• Pick the first unsorted and insert it into the right place

Sorting
Example 2

• Pick the first unsorted and insert it into the right place

Sorting
Example 2

• Pick the first unsorted and insert it into the right place

Sorting
Example 2

• Pick the first unsorted and insert it into the right place

Sorting
Example 2

• Pick the first unsorted and insert it into the right place

Sorting
Example 2

• Pick the first unsorted and insert it into the right place

Sorting
Example 2

• Pick the first unsorted and insert it into the right place

Sorting
Example 2

• Pick the first unsorted and insert it into the right place

Sorting
Example 2

Sorting
Example 2: Algorithm

For i = 2 to n:

 j = i - 1

 while j > 0 and A[j] > A[i]:

 A[j + 1] = A[j]

 j = j - 1

 A[j] = A[i]

• Take the first unsorted and
insert it into the right place in
the sorted pile

• Inserting means shifting
everything after the card by
one place

• This is called insertion sort.

Sorting
Example 2: Algorithm

For i = 2 to n:

 j = i - 1

 while j > 0 and A[j] > A[i]:

 A[j + 1] = A[j]

 j = j - 1

 A[j] = A[i]

• Comparison: worst-case

• Swap: worst-case

O(n2)

O(n2)

Sorting
Example 2: Algorithm

For i = 2 to n:

 j = i - 1

 while j > 0 and A[j] > A[i]:

 A[j + 1] = A[j]

 j = j - 1

 A[j] = A[i]

• Everything left of the line is
sorted

• Take the first one on the right,
scanning the left to find a
place.

Sorting
Example 3

• Take two cards, swap them if out of order.

Sorting
Example 3

Sorting
Example 3

Sorting
Example 3

Sorting
Example 3

Sorting
Example 3

Sorting
Example 3

Sorting
Example 3

Sorting
Example 3

Sorting
Example 3

Sorting
Example 3

Sorting
Example 3

Sorting
Example 3

Sorting
Example 3

Sorting
Example 3

Sorting
Example 3

Sorting
Example 3

Sorting
Example 3

Sorting
Example 3

Sorting
Example 3

Sorting
Example 3

Sorting
Example 3

Sorting
Example 3

Sorting
Example 3

Sorting
Example 3

Sorting
Example 3

Sorting
Example 3

Sorting
Example 3

Sorting
Example 3

Sorting
Example 3

Sorting
Example 3: Algorithm

while True:

 swapped = False

 for i = 0 to n - 1:

 if A[i] > A[i + 1]:

 swap A[i], A[i + 1]

 swapped = True

 if not swapped:

 break

• Swap two adjacent elements if
they are out of order

• How many rounds do we need
to sort the entire list?

• . Why?

• Every round, the largest
element is pushed to the right.

• comparisons,
swaps

n

O(n2) O(n2)

Sorting
Example 3: Algorithm

while True:

 swapped = False

 for i = 0 to n - 1:

 if A[i] > A[i + 1]:

 swap A[i], A[i + 1]

 swapped = True

 if not swapped:

 break

• The largest element "bubbles"
up.

• This is called bubble sort.

Sorting

• Three algorithms: Insertion sort, selection sort, bubble sort

• There are better algorithms

• We will revisit after learning about trees!

• It's a whole can of worms

O(n2)

Sorting

• Three algorithms: Insertion sort, selection sort, bubble sort

• There are better algorithms

• We will revisit after learning about trees!

• It's a whole can of worms

O(n2)

Function Pointers

Function Pointers

• Your code lives in memory too!

• ...so they have addresses

• ...so just like we have pointers to data, we have pointers to functions as well

• What's the point?

• We can pass functions around!

Function Pointers
Example

void alist_sort(struct alist *l, int (*cmp)(void *, void *))

• The second argument to this function is

• A function pointer called cmp

• The function that cmp points to takes two void * and returns int

• It tells the sorting function how to compare two arbitrary elements

• (negative if 1 < 2, 0 if 1 == 2, positive if 1 > 2)

Function Pointers
Example
void alist_sort(struct alist *l, int (*cmp)(void *, void *)) {

 for (;;) {

 int swapped = 0;

 for (int i = 0; i < l->length; i++) {

 if (cmp(l->elems[i], l->elems[i + 1]) < 0) {

 void *tmp = l->elems[i];

 l->elems[i] = l->elems[i + 1];

 l->elems[i + 1] = tmp;

 swapped = 1;

 }

 }

 if (!swapped) {

 break;

 }

 }

}

Function Pointers
Example
void alist_sort(struct alist *l, int (*cmp)(void *, void *));

int strcmp_wrapper(void *s1, void *s2)

{

 return strcmp(s1, s2);

}

int main(void)

{

 struct alist l;

 alist_sort(&l, &strcmp_wrapper);

 return 0;

}

^ optional

