
Byron Zhong, July 3

Maps & BST
CS143: lecture 9

Lists
Recap

• Lists: [🍏, 🍎, 🍐, 🍊, 🍋]

• It is an ordered collection of elements:

• Ordered: 1st, 2nd, 3rd, ...

• Elements can be homogeneous or heterogeneous.

• Elements are referred to by their index

• What if we want to use something other than a number?

Maps

• What if we want to build a mapping between one element to another
element?

• { 🍏 : ⚽, 🍎 : 🏀, 🍐 : 🏈, 🍊 : ⚾, 🍋 : 🥎 }

• Maps!

• aka dictionaries, associative array...

• A map is a data structure that stores key-value pairs

• Each key appears at most once

Maps
Operations

• insert(k, v)

• remove(k)

• lookup(k)

• size

• traverse (to visit all)

Maps
Can we use lists?

• Yes!

• Each element of the list can be a pair (key, value)

• insert(k, v):

• append((k, v))

• lookup(k):

• Go through the entire list and compare each k

• remove(k):

• lookup(k) and remove

Maps
Complexity

lookup insert remove

average worst average worst average worst

ArrayList O(n) O(n) O(1) O(n) O(n) O(n)

Linked List O(n) O(n) O(1) O(1) O(1) O(1)

Maps
Can we do better with lists?

• What if we can sort the keys?

• Lookup is faster

• We can do binary search

Binary Search

1 4 6 7 9 12 17 19 25 30 35

Find 19

Binary Search

1 4 6 7 9 12 17 19 25 30 35

Find 19

Binary Search

1 4 6 7 9 12 17 19 25 30 35

Find 19

Maps
Can we do better with lists?

• What if we can sort the keys?

• Lookup is faster

• We can do binary search

• To search a sorted list with n elements, we only need

• However

• ArrayList is bad at insert

• Linked list is bad at random access

O(log2 n)

Maps
Complexity

lookup insert remove

average worst average worst average worst

ArrayList O(n)	 O(1) O(n) O(1)

Linked List O(n)	 O(1)	 O(1)

ArrayList
(sorted) O(log n) O(n) O(n)

Linked List
(sorted) O(n) O(1) O(1)

Maps
Can we have the benefits of both?

• Yes!

• New data structure: Binary Search Tree!

Trees

• Like a linked list, but have 1 or more next pointers.

data

ptr ptr ...

Trees

• A tree can be empty (NULL) or a node

• where a node contains some data plus 1 or more pointers pointing to trees.

data

ptr ptr ...

Trees

• A non-empty tree has a root

data

ptr ptr ...

Trees

• A non-empty tree has a root

data

ptr ptr ...

Trees

• A parent node points to multiple child nodes.

data

ptr ptr ...

Trees

• A parent node points to multiple child nodes.

• Every node has exactly one parent, except the root which has no parents.

data

ptr ptr ...

Trees

• A tree can be either

• empty, or

• a node contains some data plus 1 or more pointers pointing to trees
(subtrees).

• A parent node points to multiple child nodes.

• Every node has exactly one parent, except the root which has no parents.

Is this a tree?

1

Is this a tree?

1

123 0

3 6

Is this a tree?

1

0

6

10

Is this a tree?

1

0 10

Is this a tree?

1

0 10

10

Is this a tree?

Is this a tree?

tree

Binary Tree

• A tree can be either

• empty, or

• a node contains some data plus 2 pointers pointing to trees (subtrees).

• A parent node points to multiple child nodes.

• Every node has exactly one parent, except the root which has no parents.

Is this a binary tree?

1

123 0

3 6

Is this a binary tree?

1

0

6

10

Is this a binary tree?

Binary Search Tree

• A binary search tree is a binary tree where

• For a given node n with key k,

• All nodes with keys less than k are in n's left subtree.

• All nodes with keys greater than k are in n's right subtree.

Is this a BST?

1

0 10

Is this a BST?

1

Is this a BST?

1

0 10

5 20

Is this a BST?

6

0 10

5 20

Is this a BST?

6

10

20

Is this a BST?

17

12 57

40 841 20

Is this a BST?

17

12 57

40 841 ?

Binary Search Tree

• A binary search tree is a binary tree where

• For a given node n with key k,

• All nodes with keys less than k are in n's left subtree.

• All nodes with keys greater than k are in n's right subtree.

