
Byron Zhong, July 3

Sorting II
CS143: lecture 9

In-class Quiz

• Monday, July 10: 6:00-7:20pm

• Cheat sheet: 1 letter-size, double-sided, hand-written note

• Topics:

• C Basics: Syntax, Pointers, Functions, Arrays, Types, ...

• Heap and Stack: Pass-by-reference, frames, malloc and free, strings (hw1)

• Lists: Array Lists, Linked List, sorting

• BST

BST Review
Look up 16

17

12 57

40 841 16

BST Review
Look up 16

17

12 57

40 841 16

BST Review
Look up 16

17

12 57

40 841 16

BST Review
Look up 16

17

12 57

40 841 16

BST Review
Look up

• For a given node n with key k,

• If k is what we want, return the data.

• If what we want < k, explore left

• If what we want > k, explore right

• Complexity?

• O(height)

BST Review
Insert 18

17

12 57

40 841 16

BST Review
Insert 18

17

12 57

40 841 16

BST Review
Insert 18

17

12 57

40 841 16

BST Review
Insert 18

17

12 57

40 841 16

BST Review
Insert 18

17

12 57

40 841 16

18

BST Review
Insert

• Tree is empty: Make new node, set it as root

• If item < key, insert left

• If item > key, insert right

• if Item == key, replace the node

• Complexity?

1. Find correct spot in tree to insert

2. Create a new node and return pointer

O(height)

O(1)

BST
Height

• Insert: 17, 12, 57, 1, 16, 40, 84

17

BST
Height

• Insert: 17, 12, 57, 1, 16, 40, 84

17

12

BST
Height

• Insert: 17, 12, 57, 1, 16, 40, 84

17

12 57

BST
Height

• Insert: 17, 12, 57, 1, 16, 40, 84

17

12 57

1

BST
Height

• Insert: 17, 12, 57, 1, 16, 40, 84

17

12 57

1 16

BST
Height

• Insert: 17, 12, 57, 1, 16, 40, 84

17

12 57

401 16

BST
Height

• Insert: 17, 12, 57, 1, 16, 40, 84

17

12 57

40 841 16

BST
Height

• Insert: 17, 12, 57, 1, 16, 40, 84

• Height: 3, #elements: 7

• height = log2(#elements + 1)
17

12 57

40 841 16

BST
Height

• Insert: 1, 12, 16, 17, 40, 57, 84

1

BST
Height

• Insert: 1, 12, 16, 17, 40, 57, 84

1

12

BST
Height

• Insert: 1, 12, 16, 17, 40, 57, 84

1

12

16

BST
Height

• Insert: 1, 12, 16, 17, 40, 57, 84

1

12

16

17

BST
Height

• Insert: 1, 12, 16, 17, 40, 57, 84

1

12

16

17

40

BST
Height

• Insert: 1, 12, 16, 17, 40, 57, 84

1

12

16

17

40

57

BST
Height

• Insert: 1, 12, 16, 17, 40, 57, 84

1

12

16

17

40

57

84

BST
Height

1

12

16

17

40

57

84

17

12 57

40 841 16

Balanced Unbalanced

BST
Complexity

• lookup, insert:

• for a well-balanced BST

• in general :(

• There are self-balancing BSTs

• Red-black trees, AVL trees, ...

O(log n)

O(n)

BST
Remove

• First, find node to remove

• same in lookup and insert

• Easy case: the node is a leaf

• Delete it

• Don't forget to update the parent's pointer

BST
Remove

• Harder case: node to be removed has one child

BST
Remove

• Harder case: node to be removed has one child

17

12 57

40 841

BST
Remove

• Harder case: node to be removed has one child

• Bypass this node
17

12 57

40 841

BST
Remove

• Harder case: node to be removed has one child

• Bypass this node
17

57

40 841

BST
Remove

17

12 57

40 8413

• Harder case: node to be removed has one child

• Bypass this node

BST
Remove

17

12 57

40 8413

• Harder case: node to be removed has one child

• Bypass this node

BST
Remove

17

57

40 8413

• Harder case: node to be removed has one child

• Bypass this node

BST
Remove

• Hardest case: node to be removed has two children

17

12 57

40 8410 14

1 11 13 15

BST
Remove

• Hardest case: node to be removed has two children

• Replace 12 with a value that's:

• Larger than everything in left subtree

• Smaller than .. in right ..

17

12 57

40 8410 14

1 11 13 15

BST
Remove

• Hardest case: node to be removed has two children

• Replace 12 with a value that's:

• Larger than everything in left subtree

• Smaller than .. in right ..

17

12 57

40 8410 14

1 11 13 15

BST
Remove

• Hardest case: node to be removed has two child

• Replace 12 with a value that's:

• Larger than everything in left subtree

• Smaller than .. in right ..

17

12 57

40 8410 14

1 11 13 15

BST
Remove

• Hardest case: node to be removed has two child

• Replace 12 with a value that's:

• Larger than everything in left subtree

• Smaller than .. in right ..

17

13 57

40 8410 14

1 11 15

BST
Remove

• Hardest case: node to be removed has two children

• Find min(right substree), replace

• Call remove recursively on min(right subtree)

• This recursive call will only happen once.

• min(right subtree) cannot have both children.

17

13 57

40 8410 14

1 11 15

BST
Remove

1. Find node to remove

• Easy case: node is leaf -- delete

• Harder case: node to remove has one child -- bypass

• Hardest case: node to remove has both

• Find min(right subtree) -- replace

• Remove min(right subtree)

BST
Remove Complexity

1. Find node to remove

• Easy case: node is leaf -- delete

• Harder case: node to remove has one child -- bypass

• Hardest case: node to remove has both

• Find min(right subtree) -- replace

• Remove min(right subtree)

<-- O(height)

<-- O(1)

<-- O(1)

<-- O(height)

<-- O(height)

BST
Remove

Overall complexity:

 =

Same as insert and lookup.

O(height) + O(1) + O(1) + O(height) O(height)

Maps
Complexity

lookup insert remove

average worst average worst average worst

ArrayList O(n)	 O(1) O(n) O(1)

Linked List O(n)	 O(1)	 O(1)

ArrayList
(sorted) O(log n) O(n) O(n)

Linked List
(sorted) O(n) O(1) O(1)

BST O(log n) O(n) O(log n) O(n) O(log n) O(n)

Back to sorting

• If we have a BST, how can we visit all nodes in sorted
order?

• pre-order traversal: curr first, then both children

• in-order traversal: left child, curr, right child

• post-order traversal: both children, then curr

17

13 57

40 8410 14

1 11 15

Sorting
In-order Traversal

void walk(struct tree_node *tree,
 void (*visit)(void *key, void *value, void *data),
 void *data);

Sorting
In-order Traversal

void walk(struct tree_node *tree,
 void (*visit)(void *key, void *value, void *data),
 void *data)
{
 if (tree == NULL) {
 return;
 }
 walk(tree->left, visit, data);
 visit(tree->key, tree->value, data);
 walk(tree->right, visit, data);
}

Sorting
Pre-order Traversal

void walk(struct tree_node *tree,
 void (*visit)(void *key, void *value, void *data),
 void *data)
{
 if (tree == NULL) {
 return;
 }
 visit(tree->key, tree->value, data);
 walk(tree->left, visit, data);
 walk(tree->right, visit, data);
}

Sorting
Post-order Traversal

void walk(struct tree_node *tree,
 void (*visit)(void *key, void *value, void *data),
 void *data)
{
 if (tree == NULL) {
 return;
 }
 walk(tree->left, visit, data);
 walk(tree->right, visit, data);
 visit(tree->key, tree->value, data);
}

Back to sorting
Tree Sort

Tree sort:

• Insert each elements into a (self-balancing) BST --

• In-order walk over the tree --

• Overall: !

• But we need extra memory

• Also balancing is costly

n ⋅ O(log n)

O(n)

O(n log n)

Sorting
Heap

• BST requirements:

• all nodes on the left < root < all nodes on the right

• A new arrangement:

• parent is less than any children.

• order between children does not matter.

• extra requirement: the tree is complete

• each level except the lowest is full, lowest level fills from the left

Sorting
Heap

17

13 57

4010 14

17

13 57

8410 14

Complete Incomplete

Sorting
What is the best way to store this?

10

13 40

5714 17

• Could use nodes and pointers...

• Or, we can use a data structure that provides
constant-time access to elements:

• array

Sorting
What is the best way to store this?

10

12 11

22 43

• Start array at 1 instead of 0 (make math easier)

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]
10 12 11 22 43

Sorting
What is the best way to store this?

10

12 11

22 43

• Start array at 1 instead of 0 (make math easier)

• For an element at position i:

• left child:

• right child:

• parent:

2i

2i + 1

⌊i/2⌋

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]
10 12 11 22 43

Sorting
Heap

10

12 11

22 43

• This is called a heap:

• Note: this is data structure heap, and has
nothing to do with memory heap.

• Comes in two flavors:

• Min Heap (smaller on top)

• Max Heap (larger on top)

Sorting
Heap

10

12 11

22 43

• Heap Operations:

• get_min

• insert

• remove_min

Sorting
get_min

10

12 11

22 43

• return h[1]

• O(1)

Sorting
insert(k)

10

12 11

22 43

• How might we go about inserting 9?

Sorting
insert(k)

10

12 11

22 43

• How might we go about inserting 9?

• Insert at h[size + 1]

• bubble up until you get to root

• Compare with its parent, if in correct
order, stop

• If not, swap and continue going up

9

Sorting
insert(k)

10

12 9

22 43

• How might we go about inserting 9?

• Insert at h[size + 1]

• bubble up until you get to root

• Compare with its parent, if in correct
order, stop

• If not, swap and continue going up

11

Sorting
insert(k)

9

12 10

22 43

• How might we go about inserting 9?

• Insert at h[size + 1]

• bubble up until you get to root

• Compare with its parent, if in correct
order, stop

• If not, swap and continue going up

11

Sorting
insert(k)

9

12 10

22 43

• How might we go about inserting 9?

• Insert at h[size + 1]

• bubble up until you get to root

• Compare with its parent, if in correct
order, stop

• If not, swap and continue going up

• Complexity: O(height) = O(log n)

11

Sorting
remove_min()

9

12 10

22 43

• How about removal?

11

Sorting
remove_min()

12 10

22 43

• How about removal?

• Remove root

11

Sorting
remove_min()

12 10

22 43

• How about removal?

• Remove root

• Maintain shape: replace the root with the
last element

11

Sorting
remove_min()

11

12 10

22 43

• How about removal?

• Remove root

• Maintain shape: replace the root with the
last element

Sorting
remove_min()

11

12 10

22 43

• How about removal?

• Remove root

• Maintain shape: replace the root with the
last element

• Bubble-down:

• Compare with its children

• Swap with the smallest child, and
continue bubbling down

Sorting
remove_min()

10

12 11

22 43

• How about removal?

• Remove root

• Maintain shape: replace the root with the
last element

• Bubble-down:

• Compare with its children

• Swap with the smallest child, and
continue bubbling down

Sorting
remove_min()

10

12 11

22 43

• How about removal?

• Remove root

• Maintain shape: replace the root with the last
element

• Bubble-down:

• Compare with its children

• Swap with the smallest child, and continue
bubbling down

• Complexity: O(height) = O(log n)

Sorting
Heap Sort

10

12 11

22 43

• Heap Operations:

• Insert: O(log n)

• get_min: O(1)

• remove: O(log n)

• Heap Sort:

• Construct the heap: n * O(log n)

• Remove all elements: n * O(log n)

Quiz Review

Variables
In one slide

• A variable is a named location in memory.

• A variable has a type (thereby size) and a location in memory.

• A variable needs to be declared before use. Syntax: type name;

• The first assignment to a variable is called initialization.

• A variable contains junk between declaration and initialization.

• An array is a contiguous block of elements of the same type.  
Syntax: type name[number];

• Fixed size

• Access/modify by index, syntax: name[index]. This index is not checked.

• A string is a NUL-terminated array of characters.

Pointers
Checkpoint I

• type *name; declares a variable of type "pointer to type"

• *name "dereferences" name -- following the address contained in name for
reading or writing

• &name gets the address of name -- if name has type "type", &name has type
"type *"

• Pointers can be used for passing arguments by references.

• Pointers enable sharing the same piece of data between functions.

Pointers
Review

type : int *
value: 100

100 int x

25

&x
108 int * x_p

100

type : int
value: 25

*x_p

type : int *
value: 100

type : int
value: 25

&x_p

type : int *
value: 100

type : int **
value: 108

*x

type : int
value: 25

error

Pointers
Example: Multiple return values

def divide(x, y):
 q = 0
 while y <= x:
 x -= y
 q += 1
 return q, x

q, r = divide(7, 3)
print(q, r) # 2, 1

void divide(int x, int y, int *q_p, int *r_p)
{
 int q = 0;
 while (y <= x) {
 x -= y;
 q += 1;
 }
 *q_p = q;
 *r_p = x;
}

int main(void)
{
 int q, r;
 divide(7, 3, &q, &r);

 printf("%d %d\n", q, r); // 2, 1

 return 0;
}

The Heap
Stack vs Heap

• Acquire memory:

• ptr = malloc(n)

• size: you provide during running

(dynamic)

• Release memory:

• free(ptr)

• You can forget to release;

memory leak

• Acquire memory:

• declare variables

• size: compiler calculates before

running (static)

• Release memory:

• do nothing

• You can't forget to release

Stack Heap

• Accessing released memory is bad;
memory error

Pointers
Example: Array

int sum(int *arr, int n)
{
 int sum = 0;
 for (int i = 0; i < n; i++) {
 sum += arr[i];
 }
 return sum;
}

int main(void)
{
 int numbers[7] = { 0, 1, 2, 3, 4, 5, 6 };

 printf("%d\n", sum(numbers, 7));

 return 0;
}

• Even when number is a massive
array, no copying is needed

• &numbers[0] == numbers

• Pitfall: == does pointer comparison

between arrays, does not compare
elements

• use for loop

Array
Growing an array

Th
e

H
ea

p

int *

m
a
i
n

1 2 3 4

• Pointers serve as an indirection.

• We aren't changing the size of the array; we
are changing which array the pointers point
to.

• By changing the address of the pointer, it
seems to the user that we have changed the
size of the array.

• We create and delete memory however we
want thanks to the heap.

1 2 3 4

Linked Lists

void *

ptr

void *

ptr

void *

ptr

void *

ptr

NULL

list
user's data user's data user's data user's data

Sorting
Selection, Insertion, Bubble

For i = 2 to n:
 j = i - 1
 while j > 0 and A[j] > A[i]:
 A[j + 1] = A[j]
 j = j - 1
 A[j] = A[i]

For i = 1 to n - 1:
 min = index of smallest in A[i + 1 : n]
 swap A[min] and A[i]

while True:
 swapped = False
 for i = 0 to n - 1:
 if A[i] > A[i + 1]:
 swap A[i], A[i + 1]
 swapped = True
 if not swapped:
 break

