Sorting II CS143: lecture 9

Byron Zhong, July 3

In-class Quiz

- Monday, July 10: 6:00-7:20pm
- Cheat sheet: 1 letter-size, double-sided, hand-written note
- Topics:
 - C Basics: Syntax, Pointers, Functions, Arrays, Types, ...

 - Lists: Array Lists, Linked List, sorting
 - BST

Heap and Stack: Pass-by-reference, frames, malloc and free, strings (hw1)

- For a given node *n* with key *k*,
 - If k is what we want, return the data.
 - If what we want < k, explore left
 - If what we want > k, explore right
- Complexity?
 - O(height)

- Tree is empty: Make new node, set it as root
- If item < key, insert left
- If item > key, insert right
- if Item == key, replace the node
- Complexity?
 - 1. Find correct spot in tree to insert *O*(height)
 - 2. Create a new node and return pointer O(1)

- Insert: 17, 12, 57, 1, 16, 40, 84
- Height: 3, #elements: 7
- height = log_2 (#elements + 1)

Balanced

BST Complexity

- lookup, insert:
 - $O(\log n)$ for a well-balanced BST
 - O(n) in general :(
- There are self-balancing BSTs
 - Red-black trees, AVL trees, ...

- First, find node to remove
 - same in lookup and insert
- Easy case: the node is a leaf
 - Delete it lacksquare
 - Don't forget to update the parent's pointer

• Harder case: node to be removed has one child

• Harder case: node to be removed has one child

- Harder case: node to be removed has one child
 - Bypass this node

- Harder case: node to be removed has one child
 - Bypass this node

- Harder case: node to be removed has one child
 - Bypass this node

- Harder case: node to be removed has one child
 - Bypass this node

- Harder case: node to be removed has one child
 - Bypass this node

Hardest case: node to be removed has two children

- Hardest case: node to be removed has two children
 - Replace 12 with a value that's:
 - Larger than everything in left subtree
 - Smaller than .. in right ..

- Hardest case: node to be removed has two children
 - Replace 12 with a value that's:
 - Larger than everything in left subtree
 - Smaller than .. in right ..

- Hardest case: node to be removed has two child
 - Replace 12 with a value that's:
 - Larger than everything in left subtree
 - Smaller than .. in right ..

- Hardest case: node to be removed has two child
 - Replace 12 with a value that's:
 - Larger than everything in left subtree
 - Smaller than .. in right ..

- Hardest case: node to be removed has two children
 - Find min(right substree), replace
 - Call remove recursively on min(right subtree)
 - This recursive call will only happen once.
 - min(right subtree) cannot have both children.

- 1. Find node to remove
- Easy case: node is leaf -- delete
- Harder case: node to remove has one child -- bypass
- Hardest case: node to remove has both
 - Find min(right subtree) -- replace
 - Remove min(right subtree)

BST **Remove Complexity**

- 1. Find node to remove
- Easy case: node is leaf -- delete
- Harder case: node to remove has one child -- bypass
- Hardest case: node to remove has both
 - Find min(right subtree) -- replace
 - Remove min(right subtree)

- <-- O(height)
- <--- O(1)

<--- O(1)

- <-- O(height)
- <-- O(height)

Overall complexity: O(height) + O(1) + O(1) + O(height) = O(height)Same as insert and lookup.

Maps Complexity

	100	kup	ins	ert	remove		
	average	worst	average	worst	average	worst	
ArrayList	O(n)		O(1)	O(n)	O(1)		
Linked List	0	(n)	0	(1)	O(1)		
ArrayList (sorted)	O(lc	og n)	0	(n)	O(n)		
Linked List (sorted)	0	(n)	0	(1)	O(1)		
BST	O(log n)	O(n)	O(log n)	O(n)	O(log n)	O(n)	

Back to sorting

- If we have a BST, how can we visit all nodes in sorted order?
 - pre-order traversal: curr first, then both children
 - in-order traversal: left child, curr, right child
 - post-order traversal: both children, then curr

Sorting In-order Traversal

void walk(struct tree_node *tree, void (*visit)(void *key, void *value, void *data), void *data);

Sorting In-order Traversal

void walk(struct tree_node *tree, void (*visit)(void *key, void *value, void *data), void *data)

if (tree == NULL) {

return;

}

walk(tree->left, visit, data); visit(tree->key, tree->value, data); walk(tree->right, visit, data);

Sorting Pre-order Traversal

void walk(struct tree_node *tree, void (*visit)(void *key, void *value, void *data), void *data)

if (tree == NULL) {

return;

}

visit(tree->key, tree->value, data); walk(tree->left, visit, data); walk(tree->right, visit, data);

Sorting Post-order Traversal

void walk(struct tree_node *tree, void (*visit)(void *key, void *value, void *data), void *data)

if (tree == NULL) {
return;

}

walk(tree->left, visit, data); walk(tree->right, visit, data); visit(tree->key, tree->value, data);

Back to sorting Tree Sort

Tree sort:

- Insert each elements into a (self-balancing) BST -- $n \cdot O(\log n)$
- In-order walk over the tree -- O(n)
- Overall: $O(n \log n)!$
- But we need extra memory
- Also balancing is costly

Sorting Heap

- BST requirements:
 - all nodes on the left < root < all nodes on the right
- A new arrangement:
 - parent is less than any children.
 - order between children does not matter.
 - extra requirement: the tree is *complete*
 - each level except the lowest is full, lowest level fills from the left

Sorting Heap

Complete

Incomplete

Sorting What is the best way to store this?

- Could use nodes and pointers...
- Or, we can use a data structure that provides constant-time access to elements:
- array

t provides

Sorting What is the best way to store this?

• Start array at 1 instead of 0 (make math easier)

[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	
	10	12	11	22	43					

Sorting What is the best way to store this?

- Start array at 1 instead of 0 (make math easier)
- For an element at position i:
 - left child: 2*i*
 - right child: 2i + 1
 - parent: [*i*/2]

[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	
	10	12	11	22	43					

Sorting Heap

- This is called a heap:
 - Note: this is data structure heap, and has nothing to do with memory heap.
- Comes in two flavors:
 - Min Heap (smaller on top)
 - Max Heap (larger on top)

Sorting Heap

- Heap Operations:
 - get_min
 - insert
 - remove min

Sorting get_min

- return h[1]
- 0(1)

• How might we go about inserting 9?

- How might we go about inserting 9?
 - Insert at h[size + 1]
 - bubble up until you get to root
 - Compare with its parent, if in correct order, stop
 - If not, swap and continue going up

- How might we go about inserting 9?
 - Insert at h[size + 1]
 - bubble up until you get to root
 - Compare with its parent, if in correct order, stop
 - If not, swap and continue going up

- How might we go about inserting 9?
 - Insert at h[size + 1]
 - bubble up until you get to root
 - Compare with its parent, if in correct order, stop
 - If not, swap and continue going up

- How might we go about inserting 9?
 - Insert at h[size + 1]
 - bubble up until you get to root
 - Compare with its parent, if in correct order, stop
 - If not, swap and continue going up
- Complexity: O(height) = O(log n)

• How about removal?

- How about removal?
 - Remove root

- How about removal?
 - Remove root
 - Maintain shape: replace the root with the last element

- How about removal?
 - Remove root
 - Maintain shape: replace the root with the last element

- How about removal?
 - Remove root
 - Maintain shape: replace the root with the last element
 - Bubble-down:
 - Compare with its children
 - Swap with the smallest child, and continue bubbling down

Sorting remove min()

- How about removal?
 - Remove root
 - Maintain shape: replace the root with the last element
 - Bubble-down:
 - Compare with its children
 - Swap with the smallest child, and continue bubbling down

Sorting remove min()

- How about removal?
 - Remove root
 - Maintain shape: replace the root with the last element
 - Bubble-down:
 - Compare with its children
 - Swap with the smallest child, and continue bubbling down
- Complexity: O(height) = O(log n)

Sorting Heap Sort

- Heap Operations:
 - Insert: O(log n)
 - get_min: O(1)
 - remove: O(log n)
- Heap Sort:
 - Construct the heap: n * O(log n)
 - Remove all elements: n * O(log n)

Quiz Review

Variables In one slide

- A variable is a named location in memory.
 - A variable has a type (thereby size) and a location in memory.
- A variable needs to be declared before use. Syntax: type name;
 - The first assignment to a variable is called *initialization*.
 - A variable contains junk between declaration and initialization.
- An array is a contiguous block of elements of the same type.
 Syntax: type name[number];
 - Fixed size
 - Access/modify by index, syntax: name[index]. This index is not checked.
- A string is a NUL-terminated array of characters.

index]. This index is not checked. acters.

Pointers Checkpoint I

- type *name; declares a variable of type "pointer to type"
- *name "dereferences" name -- following the address contained in name for reading or writing
- &name gets the address of name
 "type *"
- Pointers can be used for passing arguments by references.
- Pointers enable sharing the same piece of data between functions.

&name gets the address of name -- if name has type "type", &name has type

Pointers Review

type : int value: 25

- type : int * value: 100
- type : int * value: 100

type : int ** type : int value: 108 value: 25

type : int value: 25

100	int	X
	25	

error

108	int *	х_ р
	100	

type : int * value: 100

Pointers Example: Multiple return values

q, r = divide(7, 3)
print(q, r) # 2, 1

```
5
```

```
void divide(int x, int y, int *q_p, int *r_p)
        int q = 0;
        while (y <= x) {
                х -= у;
                q += 1;
        *q p = q;
        *r p = x;
int main(void)
        int q, r;
        divide(7, 3, &q, &r);
        printf("%d %d\n", q, r); // 2, 1
        return 0;
```

The Heap Stack vs Heap Stack

- Acquire memory:
 - declare variables
 - size: compiler calculates *before* running (static)
- Release memory:
 - do nothing
 - You can't forget to release
 - Accessing release memory error

Heap

- Acquire memory:
 - ptr = malloc(n)
 - size: you provide *during* running (dynamic)
- Release memory:
 - free(ptr)
 - You can forget to release; memory leak

Accessing released memory is bad;

Pointers **Example: Array**

```
int sum(int *arr, int n)
        int sum = 0;
        for (int i = 0; i < n; i++) {
                sum += arr[i];
        return sum;
int main (void)
        int numbers[7] = { 0, 1, 2, 3, 4, 5, 6 };
        printf("%d\n", sum(numbers, 7));
        return 0;
```

- Even when number is a massive array, no copying is needed
- &numbers[0] == numbers
- Pitfall: == does pointer comparison between arrays, does not compare elements
 - use for loop

Array **Growing an array**

- Pointers serve as an indirection.
 - We aren't changing the size of the array; we are changing which array the pointers point to.
 - By changing the address of the pointer, it seems to the user that we have changed the size of the array.
- We create and delete memory however we want thanks to the heap.

		1

Linked Lists

→NULL

Sorting Selection, Insertion, Bubble

while True: swapped = False for i = 0 to n - 1: if A[i] > A[i + 1]: swap A[i], A[i + 1] swapped = True if not swapped: break : n]