
Byron Zhong, July 11

Hash Table
CS143: lecture 11

Sorting
Recap

• Three algorithms: Selection, Insertion, Bubble

• Two algorithms: Tree, Heap

• There are a lot more sorting algorithms...

O(n2)

O(n log n)

Sorting
Recap

• Three algorithms: Selection, Insertion, Bubble

• Two algorithms: Tree, Heap

• There are a lot more sorting algorithms...

O(n2)

O(n log n)

Sorting
Recap

• Three algorithms: Selection, Insertion, Bubble

• Two algorithms: Tree, Heap

• There are a lot more sorting algorithms...

• ... we have time for one more.

O(n2)

O(n log n)

Counting Sort

• Count the occurrences of every number

• Output each number as many times as it occurs in the original list

Counting Sort

0 1 2 3 4 5 6 7 8 9 10
0 0 0 0 0 0 0 0 0 0 0

4 8 4 2 9 9 6 2 9
Input

Counts

Counting Sort

0 1 2 3 4 5 6 7 8 9 10
0 0 0 0 1 0 0 0 0 0 0

4 8 4 2 9 9 6 2 9
Input

Counts

Counting Sort

0 1 2 3 4 5 6 7 8 9 10
0 0 0 0 1 0 0 0 1 0 0

4 8 4 2 9 9 6 2 9
Input

Counts

Counting Sort

0 1 2 3 4 5 6 7 8 9 10
0 0 0 0 2 0 0 0 1 0 0

4 8 4 2 9 9 6 2 9
Input

Counts

Counting Sort

0 1 2 3 4 5 6 7 8 9 10
0 0 1 0 2 0 0 0 1 0 0

4 8 4 2 9 9 6 2 9
Input

Counts

Counting Sort

0 1 2 3 4 5 6 7 8 9 10
0 0 1 0 2 0 0 0 1 1 0

4 8 4 2 9 9 6 2 9
Input

Counts

Counting Sort

0 1 2 3 4 5 6 7 8 9 10
0 0 1 0 2 0 0 0 1 2 0

4 8 4 2 9 9 6 2 9
Input

Counts

Counting Sort

0 1 2 3 4 5 6 7 8 9 10
0 0 1 0 2 0 1 0 1 2 0

4 8 4 2 9 9 6 2 9
Input

Counts

Counting Sort

0 1 2 3 4 5 6 7 8 9 10
0 0 2 0 2 0 1 0 1 2 0

4 8 4 2 9 9 6 2 9
Input

Counts

Counting Sort

0 1 2 3 4 5 6 7 8 9 10
0 0 2 0 2 0 1 0 1 3 0

4 8 4 2 9 9 6 2 9
Input

Counts

Counting Sort

0 1 2 3 4 5 6 7 8 9 10
0 0 2 0 2 0 1 0 1 3 0

Output

Counts

Counting Sort

0 1 2 3 4 5 6 7 8 9 10
0 0 2 0 2 0 1 0 1 3 0

2 2
Output

Counts

Counting Sort

0 1 2 3 4 5 6 7 8 9 10
0 0 2 0 2 0 1 0 1 3 0

2 2 4 4
Output

Counts

Counting Sort

0 1 2 3 4 5 6 7 8 9 10
0 0 2 0 2 0 1 0 1 3 0

2 2 4 4 6
Output

Counts

Counting Sort

0 1 2 3 4 5 6 7 8 9 10
0 0 2 0 2 0 1 0 1 3 0

2 2 4 4 6 8
Output

Counts

Counting Sort

0 1 2 3 4 5 6 7 8 9 10
0 0 2 0 2 0 1 0 1 3 0

2 2 4 4 6 8 9 9 9
Output

Counts

Counting Sort

1. Find the range of values:

2. Initialize array:

3. Scan the list to count:

4. Scan the counts to output:

O(n)

O(n)

O(n)

O(n)

O(n) + O(n) + O(n) + O(n) = O(n)

Complexity

Counting Sort

• Only apply to integers -- need to use the value as array indices

• Need extra space:

• Counts: -- if the input is sparse, this can be a lot

• Output:

• This is almost a Map!

• Key: Integer

• Value: Counts

O(Range)

O(n)

Limitations?

Counting Sort

• Can we make this work with any value?

• Sure, instead of having an array of integers, we can have an array of
whatever values

• Can we make this work with any key?

• Turn any key into an integer

• Make the range of the integer reasonable

Limitations?

Hashing

• A hash function maps a key to an integer deterministically:

• I.e. the same key is always turned into the same integer

• Hash functions should run in time

• There are good/bad choices for hash functions

O(1)

Turning any value into an integer

Hashing

• Map 2-letter words to definitions:

• Key: 2-letter words (string)

• Value: definitions (string)

• What hash function could we use to map keys to ints?

Example: 2-letter word dictionary

ah: used to express delight, relief, regret, or contempt

as: to the same degree or amount

at: used as a function word to indicate presence or occurrence in, on, or near

do: to bring to pass

go: to move on a course

ha: used especially to express surprise, joy, or triumph

he: that male one who is neither speaker nor hearer

hi: used especially as a greeting

...

Hashing

• How many 2-letter words are there?

• 26 * 26 = 676

• How to map words into [0, 676)?

• Idea: map a-z: 0-25

• then, first letter's number * 26 + second letter's number

•

•
hash(αβ) = 26α + β

hash(go) = 26 ⋅ 6 + 14 = 170

Example: 2-letter word dictionary

a b c d e f g h i j k l m n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Hashing

• Example!

Example: 2-letter word dictionary

Hashing

• Can we extend this function to work for all words?

• https://en.wikipedia.org/wiki/Longest_word_in_English

• 2627 = 160059109085386090080713531498405298176

Problem

Word Letters

Longest chemical 189,819

Longest word in Merriam-Webster 45

Supercalifragilisticexpialidocious 34

Longest word in Shakespeare’s works 27

https://en.wikipedia.org/wiki/Longest_word_in_English

Hashing

•

• Too big for an array!

• Also, English has ~700,000 words; we only need a tiny fraction of these.

• Solution: Compress

2627 = 160059109085386090080713531498405298176

Problem

Hashing

• Generally, hash functions do not care about its output range.

• We use a compression function to put the integer in the reasonable range
[0,size)

• Common choice: modulus

• a % b calculates the remainder of a divided by b

• a % b always returns an int in the range [0, b)

Compression

Hashing

• Keys: integer

• Table size: 10

• hash: itself

• compress: hash % 10

• insert: 7, 18, 41, 35

Compression example
0

1

2

3

4

5

6

7

8

9

Hashing

• Keys: integer

• Table size: 10

• hash: itself

• compress: hash % 10

• insert: 7, 18, 41, 35

Compression example
0

1

2

3

4

5

6

7 7

8

9

Hashing

• Keys: integer

• Table size: 10

• hash: itself

• compress: hash % 10

• insert: 7, 18, 41, 35

Compression example
0

1

2

3

4

5

6

7 7

8 18

9

Hashing

• Keys: integer

• Table size: 10

• hash: itself

• compress: hash % 10

• insert: 7, 18, 41, 35

Compression example
0

1 41

2

3

4

5

6

7 7

8 18

9

Hashing

• Keys: integer

• Table size: 10

• hash: itself

• compress: hash % 10

• insert: 7, 18, 41, 35

•

Compression example
0

1 41

2

3

4

5 35

6

7 7

8 18

9

Hashing

• Keys: integer

• Table size: 10

• hash: itself

• compress: hash % 10

• insert: 7, 18, 41, 35

• What if we try to insert 75?

Compression example
0

1 41

2

3

4

5 35

6

7 7

8 18

9

Hashing

• Keys: integer

• Table size: 10

• hash: itself

• compress: hash % 10

• insert: 7, 18, 41, 35

• What if we try to insert 75?

Compression example
0

1 41

2

3

4

5 35

6

7 7

8 18

9

75

Hashing

• Two different keys sometimes end up in the same slot

• This is called a collision

• Collision has to happen if we have smaller array than the range of hash
function

• Hash function could produce the same integer for two different keys

• Compression merges different hashes together

• All tables need to handle collision

Collision

Hashing

1. Avoid collisions when possible:

1. Pick a good hash function (e.g. strlen is a terrible hash function)

2. Pick a good table size

2. When they arise (inevitably):

1. Have a way to put collisions in a table.

Handling Collision

Hashing

• Minimize collision:

• What is the worst possible hash function?

• hash(k) = 1

• What is the best possible hash function?

• Every input maps to a distinct output,

• This is called perfect hashing. The two-letter hash function is a perfect hash
function.

f(x) = f(y) ⟹ x = y

Picking a good hash function

Hashing

• If we want to hash UChicago students:

• Use their birthdays

• Month (Jan, Feb, Mar, ...)?

• Age (0, 1, 2, ..., 100)?

• Day of month (1, 2, 3, ..., 31)?

• Use their first name

• Use their last name

• Use their student ID

Picking a good hash function (Example)

Hashing

• A good hash function should be:

• fast

• collision with (extremely) low probability

• spreads out the keys

• CS284: Cryptography

Picking a good hash function

