
Byron Zhong, July 11

Hash Table (cont.)
CS143: lecture 12

Hash Table

• Nice complexity because we can index into an array instead of chasing
pointers

• We have a way to turn anything into an integer -- hash function

• We have a way to force any integers into a reasonable range -- compression
(usually modulus)

• We need to handle collisions:

• Collisions can be the result of the hash function

• ... of compression

O(1)

Recap

Hash Table

• Two approaches:

1. Chaining

2. Probing

Handling Collision

Chaining

• Each slot is a list of key-value pairs, called a bucket
0

1 41

2

3

4

5 35

6

7 7

8 18

9

Chaining

• Each slot is a list of key-value pairs, called a bucket
0

1

2

3

4

5

6

7

8

9

41

35

7

18

• You can use either list implementation

• ...but there is an obvious choice

• linked list, because of deletion

Chaining

• Each slot is a list of key-value pairs, called a bucket

Insert

0

1

2

3

4

5

6

7

8

9

41

35

7

18

• Collisions will be prepended into the list

Chaining

• Each slot is a list of key-value pairs, called a bucket

Insert

0

1

2

3

4

5

6

7

8

9

41

35

7

18

• Collisions will be prepended into the list

45

Chaining

• Each slot is a list of key-value pairs, called a bucket

Insert

0

1

2

3

4

5

6

7

8

9

41

35

7

18

• Collisions will be prepended into the list

45 15

Chaining

• Each slot is a list of key-value pairs, called a bucket

Insert

0

1

2

3

4

5

6

7

8

9

41

35

7

18

• Collisions will be prepended into the list

45 15 65

Chaining

• Each slot is a list of key-value pairs, called a bucket

Insert

0

1

2

3

4

5

6

7

8

9

41

35

7

18

insert(table, key, value):

bucket_idx = hash(key) % table->size

if found key in table->buckets[bucket_idx]:

replace value

else:

 add (key, value) into the list

Chaining

• Each slot is a list of key-value pairs, called a bucket

Insert

0

1

2

3

4

5

6

7

8

9

41

35

7

18

struct table {
 int size;
 int length;
 int (*eq)(void *, void *);
 uint64_t (*hash)(void *);
 struct bucket *buckets[];
};

struct bucket {
 void *key;
 void *value;
 struct bucket *next;
};

Chaining

• Each slot is a list of key-value pairs, called a bucket

Insert

0

1

2

3

4

5

6

7

8

9

41

35

7

18

struct table {
 int size;
 int length;
 int (*eq)(void *, void *);
 uint64_t (*hash)(void *);
 struct bucket *buckets[];
};

struct bucket {
 void *key;
 void *value;
 struct bucket *next;
};

<<-- what is this?

Interlude

• The last element of a structure may have an incomplete array type (empty
bracket)

• sizeof does not include the incomplete field

• Why?

Flexible array member

Interlude: Flexible Array Member
Memory Layout
struct table {
 int size;
 int length;
 struct bucket **buckets;
};

struct table {
 int size;
 int length;
 struct bucket *buckets[];
};

table

int

struct bucket **

int

int

.size

.length

.buckets

table

int int

int

.size

.length

.buckets

Interlude: Flexible Array Member
Memory Layout
struct table {
 int size;
 int length;
 struct bucket **buckets;
};

struct table {
 int size;
 int length;
 struct bucket *buckets[];
};

table

int

struct bucket **

int

int

.size

.length

.buckets

table

int int

int

.size

.length

.buckets

Interlude: Flexible Array Member
Allocation
struct table {
 int size;
 int length;
 struct bucket **buckets;
};

struct table {
 int size;
 int length;
 struct bucket *buckets[];
};

int size = 1024;

struct table *t =
 malloc(sizeof(struct table)
 + size * sizeof(struct bucket*));

int size = 1024;

struct table *t =
 malloc(sizeof(struct table));

t->buckets =
 malloc(size * sizeof(struct bucket*));

Interlude: Flexible Array Member
Accessing t->buckets[3];

table

int

struct bucket **

int

int

.size

.length

.buckets

table

int int

int

.size

.length

.buckets

t

Two jumps in memory

Only one jump!

 *(t + 8 + i * size)

Interlude: Flexible Array Member

• The last element of a structure may have an incomplete array type (empty
bracket)

• sizeof does not include the incomplete field

• struct table *ptr = malloc(sizeof(struct table) + extra);

• Slight performance boost

Chaining

• Each slot is a list of key-value pairs, called a bucket

Insert

0

1

2

3

4

5

6

7

8

9

41

35

7

18

45 15 65

find(table, key):

bucket_idx = hash(key) % table->size

find key in table->buckets[bucket_idx]:

Chaining

• What is complexity for accessing elements?

•

• What is the length of the chain in the worst case?

•

• This happens for a really bad hash function (e.g.)

• What if we have a good hash function (that has uniform distribution over a range of
integers)?

• What is the average (expected) length of a chain?

• : this ratio is called load factor.

O(length of the chain)

O(n)

hash(k) = 1

O(
#elements
#buckets

)

Time Complexity

Chaining

• In practice, hash tables are very fast

• Typically faster than BSTs

• Especially we can keep the load factor

• Analysis deferred to algorithms

O(1)

Time Complexity

Hash Table

• Two approaches:

1. Chaining: put a list in each bucket

2. Probing: use spare space in the array

Handling Collision

Probing

• If the bucket is occupied, use the next one.

Probing

• If the bucket is occupied, use the next one.
0

1 41

2

3

4

5 35

6

7 7

8 18

9

Probing

• If the bucket is occupied, use the next one.
0

1 41

2

3

4

5 35

6

7 7

8 18

9

75

Probing

• If the bucket is occupied, use the next one.
0

1 41

2

3

4

5 35

6 75

7 7

8 18

9

• Wrap around when reaching the end of array

• The table must have some extra space, i.e. load factor has to
be 1

• Many flavors of "next one":

• Linear probing: +1 at a time

• Quadratic probing: * 2 at a time

• ...

≤

Probing

• Let's use strlen as our (bad) hash function

Linear probing (example)

0

1

2

3

4

5

6

7

8

9

struct bucket {
 void *key;
 void *value;
};

• insert("alice", 400)

Probing

• Let's use strlen as our (bad) hash function

Linear probing (example)

0

1

2

3

4

5 ("alice", 400)

6

7

8

9

struct bucket {
 void *key;
 void *value;
};

• insert("bob", 30)

Probing

• Let's use strlen as our (bad) hash function

Linear probing (example)

0

1

2

3 ("bob", 30)

4

5 ("alice", 400)

6

7

8

9

struct bucket {
 void *key;
 void *value;
};

• insert("carl", 50)

Probing

• Let's use strlen as our (bad) hash function

Linear probing (example)

0

1

2

3 ("bob", 30)

4 ("carl", 50)

5 ("alice", 400)

6

7

8

9

struct bucket {
 void *key;
 void *value;
};

• insert("eve", 100)

Probing

• Let's use strlen as our (bad) hash function

Linear probing (example)

0

1

2

3 ("bob", 30)

4 ("carl", 50)

5 ("alice", 400)

6 ("eve", 100)

7 ("david", 60)

8

9

struct bucket {
 void *key;
 void *value;
};

• insert("david", 60)

Probing

• Let's use strlen as our (bad) hash function

Linear probing (example)

0

1

2

3 ("bob", 30)

4 ("carl", 50)

5 ("alice", 400)

6 ("eve", 100)

7 ("david", 60)

8

9

struct bucket {
 void *key;
 void *value;
};

• find("eve")

• Go to 3 bucket

• Move down until we find "eve" or until we hit
empty bucket

• return 100

Probing

• Let's use strlen as our (bad) hash function

Linear probing (example)

0

1

2

3 ("bob", 30)

4 ("carl", 50)

5 ("alice", 400)

6 ("eve", 100)

7 ("david", 60)

8

9

struct bucket {
 void *key;
 void *value;
};

• find("karl")

• Go to 4 bucket

• Move down until we find "karl" or until we hit
empty bucket

• No "karl" in table

Probing

• Let's use strlen as our (bad) hash function

Linear probing (example)

0

1

2

3 ("bob", 30)

4 ("carl", 50)

5 ("alice", 400)

6 ("eve", 100)

7 ("david", 60)

8

9

struct bucket {
 void *key;
 void *value;
};

• remove("alice")

• Go to 5

• Move down until we find "alice"

Probing

• Let's use strlen as our (bad) hash function

Linear probing (example)

0

1

2

3 ("bob", 30)

4 ("carl", 50)

5

6 ("eve", 100)

7 ("david", 60)

8

9

struct bucket {
 void *key;
 void *value;
};

• remove("alice")

• Go to 5

• Move down until we find "alice"

Probing

• Let's use strlen as our (bad) hash function

Linear probing (example)

0

1

2

3 ("bob", 30)

4 ("carl", 50)

5

6 ("eve", 100)

7 ("david", 60)

8

9

struct bucket {
 void *key;
 void *value;
};

• Find("eve")

• Go to 3

• How far do we move down?

Probing

• Let's use strlen as our (bad) hash function

Linear probing (example)

0

1

2

3 ("bob", 30)

4 ("carl", 50)

5

6 ("eve", 100)

7 ("david", 60)

8

9

struct bucket {
 void *key;
 void *value;
};

• When we removed "alice" we left a hole

• When searching for "eve" if we stop at the hole,
we won't find "eve"

• But if we don't stop at empty spots, we have to
search through the entire array if a key doesn't
exist

Probing

• Let's use strlen as our (bad) hash function

Linear probing (example)

0

1

2

3 ("bob", 30)

4 ("carl", 50)

5

6 ("eve", 100)

7 ("david", 60)

8

9

struct bucket {
 void *key;
 void *value;
};

• A bucket can be in one of three states:

• Occupied (key != NULL)

• Empty, but was always empty

• Empty, but previously occupied

Probing

• Let's use strlen as our (bad) hash function

Linear probing (example)

0

1

2

3 ("bob", 30)

4 ("carl", 50)

5

6 ("eve", 100)

7 ("david", 60)

8

9

struct bucket {
 bool removed;
 void *key;
 void *value;
};

• A bucket can be in one of three states:

• Occupied (key != NULL)

• Empty, but was always empty

• Empty, but previously occupied

true when
previously occupied

Probing

• Let's use strlen as our (bad) hash function

Linear probing (example)

0

1

2

3 ("bob", 30)

4 ("carl", 50)

5 REMOVED

6 ("eve", 100)

7 ("david", 60)

8

9

struct bucket {
 bool removed;
 void *key;
 void *value;
};

true when
previously occupied

• Find("eve")

• Go to 3

• Move down until we find "eve", or until we hit an
empty, non-removed bucket

Probing

• Let's use strlen as our (bad) hash function

Linear probing (example)
struct bucket {
 bool removed;
 void *key;
 void *value;
};

true when
previously occupied

• Find("eve")

• Go to 3

• Move down until we find "eve", or until we hit an
empty, non-removed bucket

• This empty but removed bucket is sometimes
called a tombstone

0

1

2

3 ("bob", 30)

4 ("carl", 50)

5

6 ("eve", 100)

7 ("david", 60)

8

9

Probing

• Let's use strlen as our (bad) hash function

Linear probing

0

1

2

3 ("bob", 30)

4 ("carl", 50)

5

6 ("eve", 100)

7 ("david", 60)

8

9

struct bucket {
 bool removed;
 void *key;
 void *value;
};

true when
previously occupied

• Find/Remove:

• Move down until first empty bucket

• If tombstone is encountered, continue searching

• Insert:

• Move down until first empty bucket

• If tombstone is encountered, we can reuse that bucket

• But to avoid inserting duplicate keys, we need to
continue searching until an unremoved bucket

Probing

• This is why a good hash function spreads out outputs

• If the hash function maps similar inputs to similar outputs, e.g. strlen, we
would get clusters in the hash table.

• Really bad for probing

• Clusters mean we need to go through more buckets

Linear probing
struct bucket {
 bool removed;
 void *key;
 void *value;
};

Probing

• Chaining: worst , average

• What is the worst case complexity when using probing?

• Insertion:

• Worst case: all elements are in one cluster, need to go through all to find
unfilled bucket

• Get:

• Worst case: all empty buckets are tombstones

• On average, the number of probes is at most

O(n) O(1)

O(n)

O(table_size)

1/(1 − load factor)

Time Complexity
struct bucket {
 bool removed;
 void *key;
 void *value;
};

Probing

• Let be the event that the th probe is occupied.

• , assuming elements and slots

• , since elements and slots are remaining, assuming uniform hashing

• =

•

•

•

•

• E.g. if the table is half full, the average number of probes is 1 / (1 - 0.5) = 2

Ai i
Pr[A1] = n/m n m
Pr[A2] = (n − 1)/(m − 1) n − 1 m − 1

Pr[A1 ∩ A2 ∩ … ∩ Ai−1] =
n
m

⋅
n − 1
m − 1

⋯
n − i + 2
m − i + 2

≤ (n
m)

i−1

load factori−1

E[#probes] =
∞

∑
i=1

Pr[A1 ∩ … ∩ Ai−1]

≤
∞

∑
i=1

load factori−1

=
∞

∑
i=0

load factori

=
1

1 − load factor

Time Complexity (Appendix)

Load Factor

• Keep load factor makes all operations

• Systems typically keep load factor around 0.7 to 0.75

• This is determined through experimentation

• Space vs. time trade-off

• What should we do when we hit the maximum load factor?

• Increase the # of buckets

• Can we just realloc? I.e. put the same elements in the same buckets after
expansion?

O(1) O(1)

Notes

Maps
Complexity

lookup insert remove

average worst average worst average worst

ArrayList O(n)	 O(1) O(n) O(1)

Linked List O(n)	 O(1)	 O(1)

ArrayList
(sorted) O(log n) O(n) O(n)

Linked List
(sorted) O(n) O(1) O(1)

BST O(log n) O(n) O(log n) O(n) O(log n) O(n)

Hash Table O(1) O(n) O(1) O(n) O(1) O(n)

Hash Table
Epilogue

• Hash tables are excellent at insertion, removal, and looking up. What
operations are they bad at?

• Operations that involve comparisons:

• find_min and find_max

• range look up: give me 10 < key < 20

• Better to use a heap or BST for these

• Operations that involve ordering, insert "front" and "back"

• Hash tables have no notion of "order" -- in C++, hash tables are called

unordered_map

Hash Table

• Array access is .

• Using arbitrary keys as array indices:

• Hash functions turn any values into an integer. Ideally, this should be uniform.

• Compress function forces integers into [0, table_size).

• Handling Collision:

• Chaining: put a list in each bucket

• Probing: use spare space in the array

• Load factor: the expected number of elements to go through

• #elements / #buckets

• Chaining: load factor has no limit; probing: load factor at most 1

• Adjusting #buckets to keep load factor (0.7 - 0.75) -- time/space trade-off

O(1)

In one slide

Data Structures

Indices Pointers

List Array List Linked List

Map Hash Table BST

• Establishing structures on the heap:

• Indices: contiguous

• random access

• difficult to reorder and reallocate

• Pointer: scattered

• sequential access

• easy to reorder and reallocate

O(1)

