Thread Demo

Byron Zhong, July 25

Moral: slowprimes.c

* C is so much better than Python at number crunching

e |f a problem can be broken down into disjoint subproblems, parallelism
shortens the running time by a lot

main thread

................ peer peer peer peer

pthread create() -'~'-'.'.:;;;:: -thrgad-3-1f:thread.2.] | thread 1 | | thread O

x 4| Tt /—nd
i

.................
i "y
LE}

pthread join() func(3) func(2) func(1) func(0)
x 4 I
y

u

"""""""""""

T

L
.
«*

o .
- -

‘‘‘‘‘‘‘‘‘‘‘

‘‘‘‘‘‘‘‘‘‘‘‘

‘‘‘‘‘‘‘

return (from join()) |4~

total

Moral: primes.c

* The best kind of performance improvement is algorithmic improvement -- the
one that improves the asymptotic running time.

e Thread creation has its own cost. This cost needs to be factored in when one
decides whether to use concurrency.

 Multithreading loses some benefit when the problem cannot be cleanly sliced
iInto subproblems

 Multithreading code is usually a lot more complicated than single-threaded
code.

Moral: badent.c

 Concurrency bug can happen when threads share resources.
 Threads do not have its own virtual memory space like processes do
» Memory access Is not atomic -- x += 1 Is three separate steps
 Read x to a register (load)
* |ncrement the register (update)
* Write the register to memory (store)

« Memory updates need to be synchronized

Moral: goodcnt.c

« Synchronization can be done via semaphores (e.g. locks)
* sem wait waits the value to be positive
* sem post Increments the value

* Synchronized code is not parallel :(

Moral: bomb.c

* Asynchronous I/O

e Semaphores can be used to indicate the readiness of a value

When should | use threads?

e Spot parallelizable code

 Code that doesn't depend on other's result

* E.g. loop where each iteration Is independent
 Beware of concurrency bugs

 Read-write conflict

* Write-write conflict

e Semaphore

