
Byron Zhong, July 25

Thread Demo
CS143: lecture 17



Moral: slowprimes.c

• C is so much better than Python at number crunching


• If a problem can be broken down into disjoint subproblems, parallelism 
shortens the running time by a lot

main thread

peer 
thread 3

return (from join())

pthread_create()

x 4

pthread_join()

x 4

func(3)

total 
= …

peer 
thread 2

func(2)

peer 
thread 1

func(1)

peer 
thread 0

func(0)



Moral: primes.c

• The best kind of performance improvement is algorithmic improvement -- the 
one that improves the asymptotic running time. 


• Thread creation has its own cost. This cost needs to be factored in when one 
decides whether to use concurrency.


• Multithreading loses some benefit when the problem cannot be cleanly sliced 
into subproblems


• Multithreading code is usually a lot more complicated than single-threaded 
code.



Moral: badcnt.c

• Concurrency bug can happen when threads share resources.


• Threads do not have its own virtual memory space like processes do


• Memory access is not atomic -- x += 1 is three separate steps


• Read x to a register (load)


• Increment the register (update)


• Write the register to memory (store)


• Memory updates need to be synchronized



Moral: goodcnt.c

• Synchronization can be done via semaphores (e.g. locks)


• sem_wait waits the value to be positive


• sem_post increments the value


• Synchronized code is not parallel :(



Moral: bomb.c

• Asynchronous I/O


• Semaphores can be used to indicate the readiness of a value



When should I use threads?

• Spot parallelizable code


• Code that doesn't depend on other's result


• E.g. loop where each iteration is independent


• Beware of concurrency bugs


• Read-write conflict


• Write-write conflict


• Semaphore


