Object Orientation

Byron Zhong, July 27

Thread (cont.)

badcnt.c

/* shared variable */
unsigned 1nt cnt = 0; vold *count (void *arqg)
void *count (void *); {
(void) arg;
int main (void)
{ for (unsigned int 1 = 0; 1 < N; 1++) {
pthread t tidl, tidZ; cnt++;

pthread create(&tidl, NULL, count, NULL);
pthread create(&tid2, NULL, count, NULL); return NULL;

pthread join(tidl, NULL);
pthread join(tidZ2, NULL);

if (cnt == N * 2) {
printf ("OK cnt=%u\n", cnt);
} else
printf ("BOOM cnt=%u\n", cnt);

return 0;

vold *count (void *arqg)

cnt {
0 (void) arg;
Thread (Contl) for (unsigned int 1 = 0; 1 < N; 1++)
cnt++;
badcnt.c }
return NULL;
Core)

Arithmetic and
Logical Unit

Core
Arithmetic and

Logical Unit

Registers

vold *count (void *arqg)

cnt {
0 (void) arg;
Thread (Contl) for (unsigned int 1 = 0; 1 < N; 1++)
cnt++;
badcnt.c }
return NULL;
Core)

Arithmetic and
Logical Unit
O

Core

Arithmetic and

Logical Unit

Registers

vold *count (void *arqg)

cnt {
0 (void) arg;
Thread (Contl) for (unsigned int 1 = 0; 1 < N; 1++)
cnt++;
badcnt.c }
return NULL;
Core)

Arithmetic and
Logical Unit
1

Core

Arithmetic and

Logical Unit

Registers

vold *count (void *arqg)

cnt {
1 (void) arg;
Thread (Contl) for (unsigned int 1 = 0; 1 < N; 1++)
cnt++;
badcnt.c }
return NULL;
Core)

Arithmetic and
Logical Unit
1

Core

Arithmetic and

Logical Unit

Registers

vold *count (void *arqg)

cnt {
1 (void) arg;
Thread (Contl) for (unsigned int 1 = 0; 1 < N; 1++)
cnt++;
badcnt.c }
return NULL;
Core)

Arithmetic and
Logical Unit
1

Core

Arithmetic and

Logical Unit

Registers 1

vold *count (void *arqg)

cnt {
1 (void) arg;
Thread (Contl) for (unsigned int 1 = 0; 1 < N; 1++)
cnt++;
badcnt.c }
return NULL;
Core)

Arithmetic and
Logical Unit
1

Core

Arithmetic and

Logical Unit

Registers 2

vold *count (void *arqg)

cnt {
2 (void) arg;
Thread (Contl) for (unsigned int 1 = 0; 1 < N; 1++)
cnt++;
badcnt.c }
return NULL;
Core)

Arithmetic and
Logical Unit
1

Core

Arithmetic and

Logical Unit

Registers 2

Thread (cont.)

badcnt.c

Core
Arithmetic and
Logical Unit

Core
Arithmetic and

Logical Unit

Registers

cnt

10

vold *count (void *arqg)

{

(void) arg;

for (unsigned int 1
cnt++;

J

return NULL;

;1 < N3

i++)

Thread (cont.)

badcnt.c

Core
Arithmetic and
Logical Unit

Core
Arithmetic and

Logical Unit

Registers

cnt

10

vold *count (void *arqg)

{

(void) arg;

for (unsigned int 1
cnt++;

J

return NULL;

;1 < N3

i++)

Thread (cont.)

badcnt.c

Core
Arithmetic and
Logical Unit

Core
Arithmetic and

Logical Unit

Registers

cnt

10

vold *count (void *arqg)

{

(void) arg;

for (unsigned int 1
cnt++;

J

return NULL;

;1 < N3

i++)

Thread (cont.)

badcnt.c

Core
Arithmetic and
Logical Unit

Core
Arithmetic and

Logical Unit

Registers

cnt

11

vold *count (void *arqg)

{

(void) arg;

for (unsigned int 1
cnt++;

J

return NULL;

;1 < N3

i++)

Thread (cont.)

goodcnt.c

Core
Arithmetic and
Logical Unit

Core
Arithmetic and
Logical Unit

cnt

11

vold *count (void *arqg)

{

J

(void) arg;
for (unsigned int 1 = 0; 1 < Ny
sem walt (&sem) ;

cnt++;
sem post (&sem) ;

}

return NULL;

sem wait "locks” cnt, if it is already
locked, sem wait will walt

sem post "unlocks"” cnt

Each loop now becomes

lock

read cnt
INCr

write to cnt
unlock

No other thread will touch the number
between reading and writing

i++)

Object-Oriented Programming

Recap

 OOP is a paradigm in which you break down the problems into objects that
Interact with each other:

* A card object, a player object, a chess-board object, a sorter object, ...
 An object has some state and some actions:

* A car has location, speed, make, model, color, VIN, ...

* A car can go, stop, turn, honk, ...

* A class groups objects by their shared characteristics -- a blueprint for
making objects

Object-Oriented Programming

Recap
class Car: E mercedes = Car ("mercedes", "c300")
def 1nit (self, make, model): E toyota = Car ("toyota", "camry")
self.make = make : honda = Car ("honda", "accord")
self.model = model :
: mercedes.go ()
def go(self): E mercedes.stop ()

def stop(self):

Class defines the data (state) and the methods E Object is an instance of class with the fields

(interactions). filled in.

Object-Oriented Programming

Recap

* Encapsulation:

 Expose selected functionality to the user while hiding implementation
details

e |nheritance:
e Create arefinement of some base class
* Polymorphism:

e [reating different objects uniformly and deciding what to do at runtime

Object-Oriented Programming

Recap: Encapsulation

class Car:
mercedes.go ()

def init (self, make, model):

— — mercedes.stop ()

self.make = make

self.model = model : |

self. engine displacement = ... : * The client doesn't need to know

~ ~ anything about the ugly
def go (self): implementation details.
 T[he detalls are contained in the object.

def stop(self): The implementation can be changed

at any time without affecting users.

 Note: Python's encapsulation runs on
honor system; some languages
actually forbid access to some
attribute/methods

def go i1mpl (self, argl, arg2, arg3, arg4):
"ugly 1mplementation details"

* private public

e struct table; :)

Object-Oriented Programming

Recap: Inheritance

animall = Cat ("bob")

class Animal: E animal? = Animal ("alice")
def init (self, name): : print(animall.noise())
self.name = name : print(animal2.noise())
def get name (self): i« Subclasses inherit data and actions from a superclass.

return self.name
A subclass can override a superclass's method
def noise(self) :

return "Generic sine wave" A subclass can add data/actions to superclass's

A subclass is a more precise description of the shared

characteristics.
class Cat (Animal) :

def noise(self) :
return "Meow"

Object-Oriented Programming

Recap: Polymorphism

class Animal: E animals = [Cat("alice"), Cat("bob"),
def init (self, name): : Dog ("charlie™), Dog("delta")]
self.name = name : for animal in animals:

print (animal.nolse())
def get name (self):

return sell.name * (This is not really applicable to Python for its dynamic

| typing)
def noilise(self): :
return "Generic sine wave" : * The superclass defines the set of actions/fields that all
: subclasses share.

class Cat (Animal) :
def noise(self):
return "Meow"

 Each animal in the list has the same type Animal even
though they have different interactions.

e In C++, for example, 1ist<Animal> animals;
class Dog (Animal) :
def noise(self) :
return "Woof"

Object-Oriented Programming

Recap: Polymorphism

class Anlmal: animall = Cat ("bob")
def __lnlt__(Self, name). i animal? = DOg("alice")
self.name = name :

print (animall.reduce noise())

print (animalZ.reduce noise|())
def get name (self) : -

return self.name | | . g e
e When Animal calls self.noise (), It seems like it will

' ' ' . ' ' "
def noise (self): call its own noise, i.e. "Generic sine wave".

1A} . . "
return "Generic sine wave * Not only can a subclass call a superclass's method, a

| superclass can also call a subclass's method
def reduce noise(self):

return self.noise().lower() i e« But,somehow the Animal class knows what it really is
: precisely
class Cat (Animal) :
def noise(self) :
return "Meow"

* There is only one definition of reduce noise, how
does it behave differently?

class Dog (Animal) :
def noise(self):
return "Woof"

Object-Oriented Programming
Under the hood

« How on earth do we implement this?
 Can we implement this in C, which doesn't have any support for OOP?
* Yes

 When people say "X is an OOP language,” what they mean is that X has good
support for OOP paradigm.

* We can still capture OOP concepts even in a language that has no support
(i.e. C).

But... we know that function calls are just jumps

int accum = 0; int sum(int x, 1int vy);
int sum(int x, 1int V) int main(void)
{ {
int t = x + y; return sum(/l,
accum += t; }

return tC;

0000000000401110 <sum>:

) ;

401110:89 f£8 mov sedi, $eax
401112:01 £0 add Zesi, $eax
401114:01 05 12 2f 00 00 add %eax,0x2£f12 (%rip) # 40402c <accum>
40l111a:c3 retq
40111b:0£f 1£f 44 00 0O nopl 0x0 (%rax, %rax,1l)
0000000000401120 <main>:
401120:bf 01 00 00 0O mov S0x1, $edi Put 1 and 3 into
401125:be 03 00 00 0O mov S0x3, $esi registers

40112a:e9 el ff ff ff Jmpq 401110 <sum>
40112£:90 nop Jump to 401110

Object-Oriented Programming

Implementation
: animall = Cat ("bob")
class Animal: : animal2 = Animal ("alice™)
def init (self, name): : print(animall.noise())
self.name = name : print(animal2.noise())
def get_name (self): .« Now that we have two implementations of noi se,
return self.name which one do we jump to?
def noise (self): i« We can look at the types!

return "Generic sine wave" | , |
o BTW C doesn't have this problem because you can't

have more than one functions with the same name

class Cat (Animal): e But C++, which does have classes, do need to solve
def noilise(self): this problem
return "Meow" :

Object-Oriented Programming

Implementation

#include <cstdio> ; int main()

Animal animall;

class Animal { Cat animal?:

public:

Animal () { } :

void noise(); : animall.noise();
}; : animalz.noise () ;
class Cat : public Animal { return 0;
public:

vold noise () ;

}y

vold Animal::noise () {
printf ("%s\n", "Generic sine wave");

J

vold Cat::noise () {
printf ("%s\n", "Meow");

J

Object-Oriented Programming

Implementation

int main() | First call jumps to the Animal's definition
Animal animall;

Cat animal?2Z;

Second call jumps to the Cat's definition

animall.noise () ;
animal’Z.noise () ;

return ;

0000000000401190 <main>:

4011b5:e8 76 ff ff ff callg 401130 < ZN6AnimalSnoiseEv>
4011ba:48 8d 7d f£0 5a -0x10 (3rbp) ,3rd1i

40l1be:e8 9d ff ff ff allg 401160 < ZN3CatbnoiseEv>

Object-Oriented Programming

Implementation
class Anlmal: animall = Cat ("bob")
def 1nit (self, name): animal?2 = Dog("alice")
self.name = name

print (animall.reduce noise())

print (animalZ.reduce noise|())
def get name (self) : -

return 1f.
u S Hame But that trick breaks down in this example :(

def noise(self): | i« InAnimal, self hastype Animal. Wouldn't it just
return "Generic sine wave" E jump to Animal's noise?

def reduce noise(self): i« |nfact, C++ does get this wrong in this case!
return self.noise () .lower () :

class Cat (Animal) :
def noise(self) :
return "Meow"

class Dog (Animal) :
def noise(self):
return "Woof"

Object-Oriented Programming

Implementation

int main () {
Dog animall;
Cat animal?’?;

printf ("$s\n", animall.reduce noise().c str());
printf ("$s\n", animal2.reduce noilse().c str());

return 0;

byronzhong@®linuxl1l:~$./a.out

generic silne wave
generic silne wave

Object-Oriented Programming

Implementation
class Anlmal: animall = Cat ("bob")
def 1nit (self, name): animal?2 = Dog("alice")
self.name = name

print (animall.reduce noise())

print (animalZ.reduce noise|())
def get name (self) : -

return 1f.
u S Hame But that trick breaks down in this example :(

def noise(self): i« InAnimal, self hastype Animal. Wouldn't it just
return "Generic sine wave" E jump to Animal's noise?
def reduce noise(self): * In fact, C++ does get this wrong in this case!
return self.noise () .lower () : _ _ L ,
 Compiler cannot decide at compile-time what functions
class Cat (Animal) : to call
def noise (Sflf) ‘) We need to call the appropriate function based on the
return "Meow object's time during runtime
class Dog (Animal) : P . Dynamic dispatch!

def noise(self):
return "Woof"

Object-Oriented Programming
Dynamic Dispatch in C (1)

o Cat = {luna, lily, penny, ...}
» Dog = {max, charlie, cooper, ...}

« Animal = Cat U Dog

Animal can be viewed as a union of all specific sets of animals!

Object-Oriented Programming

Union
struct number { i union number |
int 1; : int 1;
float £; E long 1;
long 1; i float £;
double d; : double d;
b b
e A structure has all the fields i e A union has one of the field at a time
 The size of of a structure is (roughly) the sum * The size of a union is the maximum of the sizes
of the sizes of all the fields 5 of all the fields
ANEEEEEEEEEEEEEEEEEEEEEE SN NEEEEEEEEEEEEEEEE
* n.l1 selects the 1 field from the struct. * n.1 interprets the bits as a 1ong (same piece

(address offset from the start) 5 of data)

Object-Oriented Programming

Union
e A union has one of the field at a time

union number {
e The size of a union is the maximum of the sizes

int 1; |
long 1; of all the fields
float £,

double d: PP T T T T T T T I IITITITITITITITITTId

* n.1 interprets the bits as a 1ong (same piece

}r

of data)
vold print number (union number n) _
{ B e But... how do we know what is the correct
| ?
printf (22", n.??); way to interpret the data”
} e We don't!

 Thereis no way to ask C which of the union it
was set to before

 But we can/must keep track of this ourselves

Object-Oriented Programming
Tagged Union

enum number tag { union number { struct tagged number {
INT, int 1; enum number tag tag;
LONG, long 1; union number number;
FLOAT, float £, };
DOUBLE, double d;

}r }r

int main (void)
{

struct tagged_number nj; You as the programmer need to make

n.numper.i = 4; sure the tag is set correctly.
n.tag = INT;

print number (n);

return :

vold print nu

{

Object-Oriented Programming
Tagged Union

enum number tag {

}r

INT,
LONG,
FLOAT,
DOUBLE,

switch (tn.tag) {
case INT:
printf ("sd
break;
case LONG:
printf ("%$1d
break;
case FLOAT:
printf ("sf
break;

union number {

}
We only choose to interpret it as an integer after

°
’

’/

"

’/

matching on the tag!

4

int 1;
long 1;
float £;
double d;

tn.number.1i) ;

tn.number.1l);

tn.number.f) ;

struct tagged number {

}r

enum numpber tag tag;
unlion number number;

case DOUBLE:

default:

J

printf ("3t

break;

assert (

) ;

’/

tn.number.d) ;

Object-Oriented Programming

Tagged Union

enum number tag { union number {

INT, int 1;
LONG, long 1;
FLOAT, float £,
DOUBLE, double d;

}r }r

vold print number (struct tagged number tn)
{
switch (tn.tag) {
case INT:
printf ("sd\n", tn.number.1i);
break;
case LONG:
printf ("sld\n", tn.number.l);
break;
case FLOAT:
printf ("sf\n", tn.number.f);
break;

struct tagged number {
enum numpber tag tag;
union numpber number;

}r

case DOUBLE:

printf ("sf\n", tn.number.d);
break;
default:

assert(0) ;

J

Hold on, we're inspecting the type of a value and
doing something different based on its type.

DYNAMIC DISPATCH!!

Object-Oriented Programming

Dynamic Dispatch via Tagged Union

enum animal tag { struct tagged animal {
CAT, enum animal tag tag;
DOG, union animal animal;
b s }s
struct cat { const char *noise(struct tagged animal animal)
const char *name; {
switch (animal.tag) {
b case CAT:
return "Meow";
struct dog { case DOG:
const char *name; return "Woof";
default:
}; return "Generic sine wave';
union animal |) }

struct cat c¢;
struct dog d;

}r

Object-Oriented Programming

Dynamic Dispatch via Tagged Union

#include <tagged-union-demo>

Object-Oriented Programming

Dynamic Dispatch via Tagged Union

* A union is a type that can be one of the declared fields at a given time
* The fields overlap in memory

 C doesn't keep track of which field was set in a union and C doesn't prevent you from
selecting the wrong union fields.

 When you select the wrong field, you choose a wrong interpretation of the bits and
potentially read some uninitialized bits.

A common way to keep track of the correct interpretation is to use tagged union.
» structure of an enum and a union

 Enum keeps track of the alternatives, and the union stores the data of one of them.

Object-Oriented Programming

Dynamic Dispatch via Tagged Union

 However, a tagged union is not extensible

* |f we want to add another animal, every function needs to be changed.

enum animal tag { const char *noise(struct animal *a) void walk(struct animal *a)
CAT, { {

DOG, switch (a->tag) { switch (a->tag) {
ALLIGATOR,

} s case ALLIGATOR: case ALLIGATOR:

