
Byron Zhong, August 1

Wrap Up and Look Forward
CS143: lecture 20

A Von Neumann Machine

CPU

Memory Unit

Input/Output

A new perspective...

• Variables (data) and functions (code) live in memory

• Memory is a contiguous storage of bytes

• Each byte has an address -- variables and functions have addresses

• When executing a program, CPU fetches an instruction from memory and performs
actions:

• Read (n bytes) from an address to a register, write (n bytes) to an address to a register

• Manipulate the bits in registers -- computation

• Jump to another instruction, check for conditions, ...

• The compiler clang translates your C program into these instructions

A new perspective...

• A process's memory is partitioned into

• The stack: the compiler uses this to manage local variables. Stack frames come and

go as functions are called and return

• The heap: you use this to store data with complicated lifetime

• ptr = malloc(n);

• free(ptr);

• One malloc, one free

• Code, global variables, string literals ...

• Virtual memory: OS gives each process its own memory address space (0 -- FFFFFFF...)

A new perspective...

• Data and code are just bits

• A bit answers a yes/no question -- we specify what the questions are by
agreeing on an encoding

• Unsigned integer encoding -- each bit indicates the presence of a power of
2

• Signed integer encoding (2's complement) -- the highest bit is negative

• We can come up with our own encodings (e.g. student record)

• Types are used to keep track of the encodings

A new perspective...

• Statically, we can organize data...

• ... of different types into a struct

• to represent a real-world object

• to group variables that are dependent (invariants)

• ... of the same type into an array

• to represent multiple instances of the same thing

• to apply the same action repeatedly

• Compiler translates structs and arrays access into direct memory access

A new perspective...

• Dynamically, we can organize data as:

• list: an ordered sequence

• If we use pointers to keep track of the order -- linked list

• Easy to reorder, insert, delete, ...

• If we use relative memory position to keep track of the order -- arraylist

• Easy to access specific element

• map: a collection of key-value pairs

• BST -- if the keys are ordered

• Hash Table -- if the keys can be converted to an integer -- need to handle collision

HW0: C basics

• Syntax, types, conditionals, compiling, ASCII...

• printf("%c %6.2f\n", 'A' + i, freq * 100);

HW1: readline, split and join

• C string: '\0'

• Allocation, reallocation, deallocation, ...

• char **line_p

• Pointers, pointers, pointers

HW2, HW3, HW4

• Data Structures:

• Linked list

• BST

• Hash table

• lib directory

HW5: Groups

• File I/O

• Using map and list

• Memory cleaning

• Higher-order functions

HW6: Compress

• Bits!

Topics Covered

Memory:
• Variables and types

• Array

• Types

• Pointers

• Pass by reference

• Function frames

• Stack and Heap

Data structure:
• Array List

• Linked List

• Tree & BST

• Hash Table

• Min Heap

• Selection, insertion, 

bubble sort

• Tree sort, heap sort,

• Counting sort

Bits:
• Bitwise operations

• Integer representation

• Bit-packing

• Masks

• Binary and hex

• Endianness

Other:
• Threads

• Virtual memory

• Dynamic dispatch

• Terminal

• Git

• Compiler

• Makefile

• Valgrind

• Machine structure

What next?

• Data structure, complexity, sorting:

• CMSC 27200. Theory of Algorithms

• File, permanent storage, bits:

• CMSC 23500. Introduction to Database Systems

• Memory, instructions, language:

• CMSC 14400 Systems Programming II

• CMSC 22200. Computer Architecture

• CMSC 22600. Compilers for Computer Languages

• Communication, bits, systems:

• CMSC 23300. Networks and Distributed Systems

• Concurrency, threads, scheduling:

• CMSC 23000. Operating Systems

• CMSC 23010. Parallel Computing

... and many more!

Study for Final

• Binary, hex, decimal conversion (both signed and unsigned)

• Write a C function that prints all the bits of a 64-bit integer in binary and in hex

• Randomly pick a number, convert it to hex, binary, decimal

• Review bit-packing and bit flags

• Hash table

• What is a good hash function? What is a problematic hash function?

• How collisions happen?

• Chaining

• Probing -- why do we need tombstones?

• Tagged union

• Write a tagged union called Car with variants SUV, Sedan, Truck

