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Abstract 

Category theorists invented monads in the 1960’s to 
concisely express certain aspects of universal algebra. 
Functional programmers invented lisf comprehensions 
in the 1970’s to concisely express certain programs in- 
volving lists. This paper shows how list comprehensions 
may be generalised to an arbitrary monad, and how the 
resulting programming feature can concisely express in 
a pure functional language some programs that manipu- 
late state, handle exceptions, parse text, or invoke con- 
tinuations. A new solution to the old problem of de- 
structive array update is also presented. No knowledge 
of category theory is assumed. 

1 Introduction 

Is there a way to combine the indulgences of impurity 
with the benefits of purity? 

Impure, strict functional languages such as Standard 
ML [Mi184, HMT88] and Scheme [RC86] support a wide 
variety of features, such as assigning to state, handling 
exceptions, and invoking continuations. Pure, lazy func- 
tional languages such as Haskell [HW90] or Miranda’ 
[Tur85] eschew such features, because they are incom- 
patible with the advantages of lazy evaluation and equa- 
tional reasoning, advantages that have been described 
at length elsewhere [Hug89, BWSS]. 

Purity has its regrets, and all programmers in pure 
functional languages will recall some moment when an 
impure feature has tempted them. For instance, if a 
counter is required to generate unique names, then an 
assignable variabIe seems just the ticket. In such cases 
it is always possible to mimic the required impure fea- 
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ture by straightforward though tedious means. For in- 
stance, a counter can be simulated by modifying the rel- 
evant functions to accept an additional parameter (the 
counter’s current value) and return an additional result 
(the counter’s updated value). 

This paper describes a new method for structur- 
ing pure programs that mimic impure features. This 
method does not completely eliminate the tension be- 
tween purity and impurity, but it does relax it a little 
bit. It increases the readability of the resulting pro- 
grams, and it eliminates the possibility of certain silly 
errors that might otherwise arise (such as accidentally 
passing the wrong value for the counter parameter). 

The inspiration for this technique comes from the 
work of Eugenio Moggi [Mog89a, Mog89b]. His goal was 
to provide a way of structuring the semantic description 
of features such as state, exceptions, and continuations. 
His discovery was that the notion of a monad from cate- 
gory theory suits this purpose. By defining an interpre- 
tation of X-calculus in an arbitrary monad he provided 
a framework that could describe all these features and 
more. 

It is relatively straightforward to adopt Moggi’s tech- 
nique of structuring denotational specifications into a 
technique for structuring functional programs. This 
paper presents a simplified version of Moggi’s ideas, 
framed in a way better suited to functional programmers 
rather than semanticists; in particular, no knowledge of 
category theory is assumed. 

The paper contains two significant new contributions. 

The first contribution is a new language feature, the 
monad comprehension. These generalise the familiar nc+ 
tion of list comprehension [Wad87], due originally to 
Burstall and Darlington, and found in KRC [Tur82], 
hliranda, Haskell and other languages. Monad compre- 
hensions are not essential to the structuring technique 
described here, but they do provide a pleasant syntax 
for expressing programs structured in this way. 

The second contribution is a new solution to the old 
problem of destructive array update. The solution con- 
sists of two abstract data types with ten operations be- 
tween them. The usual typing discipline (e.g., Hindley- 
Milner extended with abstract data types) is sufficient 
to guarantee that array update may safely be imple- 
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mented by overwriting. To my knowledge, this solu- 
tion has never been proposed before, and its existence 
is quite a surprise considering the plethora of more elab- 
orate solutions that have been proposed: these include 
syntactic restrictions [Sch85], run-time checks [Hol83], 
abstract interpretation [Hud86a, Hud86b, Blo89], and 
exotic type systems [GH90, WadSO]. That monads led 
to the discovery of this solution must be counted a point 
in their favour. 

Why has this solution not been discovered before? 
One likely reason is that the data types involve higher- 
order functions in an essential way. The usual ax- 
iomatisation of arrays involves only first-order func- 
tions (index, update, and newarray, as described in Sec- 
tion 4.3), and so, apparently, it did not occur to anyone 
to search for an abstract data type based on higher- 
order functions. Incidentally, the higher-order nature of 
the solution means that it cannot be applied in first- 
order languages such as Prolog or OBJ. It also casts 
doubt on Goguen’s thesis that first-order languages are 
sufficient for most purposes [Gog88]. 

Monads and monad comprehensions help to clar- 
ify to unify some previous proposals for incorporating 
various features into functional languages: exceptions 
tWad85, Spi89], p arsers [Wad85, Fai87, FL89], and non- 
determinism [H089]. (Spivey’s work [Spi89] is notable 
for pointing out, independently of Moggi, that monads 
provide a framework for exception handling.) 

There is a translation scheme from &calculus into 
an arbitrary monad, indeed, there are two schemes, 
one yielding call-by-value semantics and one yielding 
call-by-name. These can be used to systematically 
transform languages with state, exceptions, continua- 
tions, or other features, into a pure functional language. 
Two applications are given. One is to derive call-by- 
value and call-by-name interpretations for a simple non- 
deterministic language. The other is to apply the cail- 
by-value scheme in the monad of continuations: the re- 
sult is the familiar continuation-passing style transfor- 
mation. 

A key feature of the monad approach is the use of 
types to indicate what parts of a program may have 
what sorts of effects. In this, it is similar in spirit to 
Gifford and Lucassen’s effect systems [GL88]. 

The examples in this paper are based on Haskell 
[HW90], though any lazy functional language incorpo- 
rating the Hindley/Milner type system would work as 
well. 

The remainder of this paper is organised as follows. 
Section 2 uses list comprehensions to motivate the con- 
cept of a monad, and introduces monad comprehen- 
sions. Section 3 shows that variable binding (as in 
“where” terms) and control of evaluation order can be 
modelled by two trivial monads. Section 4 explores the 

use of monads to structure programs that manipulate 
state, and presents the new solution to the array up- 
date problem. Two examples are considered: renam- 
ing bound variables, and interpreting a simple imper- 
ative language. Section 5 extends monad comprehen- 
sions to include filters. Section 6 introduces the con- 
cept of monad morphism and gives a simple proof of the 
equivalence of two programs. Section 7 catalogues three 
more monads: parsers, exceptions, and continuations. 
Section 8 gives the translation schemes for interpreting 
X-calculus in an arbitrary monad. Two examples are 
considered: giving a semantics to a non-deterministic 
language, and deriving continuation-passing style. 

2 Comprehensions and monads 

2.1 Lists 

Let us write M 3: for the data type of lists with elements 
of type 2. (In Haskell, MI is written IX].) For exam- 
ple, [1,2,3] :: M Inl and [‘a’, ‘b’, ‘c’] :: M Char. We 

write map for the higher-order function that applies a 
function to each elment of a list: 

map :: (x + y) -+ (M x * M y). 

(In Haskell, type variables are written with small let- 
ters, e.g., z and y, and type constructors are writ- 
ten with capital letters, e.g., M.) For example, if 
code : Char - Int maps a character to its ASCII code, 
then map code [‘a’, ‘b’, ‘c’] = [97,98,99]; Observe that 

w map id = id, 
(ii) map(g .f) = mapg .mapf. 

Here id is the identity function, id x = x, and g . f is 
function composition, (g . f) x = g (f x). 

In categorical terms, any operator M on types com- 
bined with an operator map taking functions x - y 
into functions M 2 + M y and satisfying (i) and (ii) 
is called a functor. Categorists prefer to use the same 
symbol for both the type operator and the function op- 
erator, so would write M f where we write map f. 

Two useful functions are one that converts a value 
into a singleton list and one that concatenates a list of 
lists into a list: 

unit :: x ---) M x, 
join :: M (M x) -+ M x. 

For example, unit 3 = [3] and join [[l, 21, [3]] = [l, 2,3]. 
Observe that 

(iii) 

(iv> 

map f unit = unit . f, 
mapf .join = join. map (mapf). 
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Indeed, laws (iii) and (iv) follow immediately from the 
types of unit and join; see [Rey83, Wad891 for an ex- 
planation. 

In categorical terms, unit and join are natural trans- 
formations. Rather than treating unit as a single func- 
tion with a polymorphic type, categorists treat it as 
a family of functions, unit, :: 3: + M 2 satisfying 
mapf f unit, = unit,, . f for every f :: x + y, where 
x and y are any types; and they treat join similarly. 
Natural transformation is a simpler concept than poly- 
morphic type, but this paper will stick with polymor- 
phic types since they are more familiar (to functional 
programmers). 

2.2 Comprehensions 

Many functional languages provide a form of list com- 

prehension analogous to set comprehension. For exam- 
ple, 

KGY> Ix + [I,212 +- [3,411 
= [(I,3),(1,4), (2,3), (2,4)1. 

In general, a comprehension has the form [ t ] q 3, where 
t is a term and q is a qualifier. We will use the letters 
t, ‘11, ZI to range over terms, and p, Q, T to range over 
qualifiers. A qualifier is either empty, A; or a generator, 
x + u, where 3: is a variable and u is a list-valued term; 
or a composition of qualifiers, (p; q). Comprehensions 
are defined by the following rules: 

ii; 
[t JA] = unit2 

[tlx+-u] = map (Xx -+ 2) u 

(3) It I (pi 411 = ioin[Itld I PI 

(In Haskell, X-terms are written (Xx 4 t) rather than 
the more common (AZ. t).) Note the reversal of qual- 
ifiers in rule (3): nesting q inside p on the right-hand 
side means that, as we expect, variables bound in p may 
be used in q. 

For those familiar with list comprehensions, the 
empty qualifier and the parentheses around qualifier 
compositions will appear strange. This is because they 
are not needed; qualifier composition is associative and 
has the empty qualifier as a unit. This will be proved 
shortly. Indeed, the only reason for here for including 
parentheses is to facilitate the proof that they are not 
required! 

Most languages that include list comprehensions also 
allow another form of qualifier, known as a filter. Filters 
will be ignored for the time being, but returned to in 
Section 5. 

(A footnote for categorists: Using A-terms means that 
we are working within a Cartesian closed category. Thus, 
for each pair of objects (types) x and y in the category, 
there is an object (type) x 3 y representing the arrows 

from x to y. Since M (or, in out notation, map) may 
appear in the body of a X-term, it must itself correspond 
to an arrow of the category, M : (z 3 y) -+ (M 2: * 
M y). Such an M is called a strong functor.) 

As a simple example, we have: 

h-3: I x c- [I,2,31] 
= {by (2)) 

map (Ax - sqr x) [l, 2,3] 
= [;ei;ing map) 

, , 

The comprehension in the initial example is computed 
as. 

[(X,Y) I x + [I,2l;y +-[3,411 
= {by (3)) 

join[[(x,y) I Y+--[3,411 12 +-Ill211 
= Iby (‘41 

join [map (AY - C.2, Y>> [3,41 I x +- PI 211 

‘, Y>> [3,41) PA> 

117 21) 

= iby (2)) 
join (map (Xx -+ map (Xy ----) (x 

= {reducing map} 

join(map (Xx - [(x,3),(x,4)1) 
= {reducing map} 

join[[(1,3),(1,4)l,[f2,3),(2,4)1 I 
= {reducing join} 

[(1,3),(1,4>,(2,3),(2,4)1 

A useful property satisfied by list comprehensions is 

(4) [ft I41 = mapf[t 191, 

for all functions f, terms t, and qualifiers q, so long as 
f contains no free variables bound by q. For example, 

[w+ + Y) I 2: + P,% Y +- [3,4]] = map sqr[x + y I 
x e [1,2]; y c [3,4]]. The proof is by induction on the 
structure of qualifiers, and uses laws (ii)-(h). We also 
have that 

(5) [XIX+--u] = ‘11. 

which follows from law (i). 

2.3 Monads 

Parentheses in qualifiers are not required, because qual- 
ifier composition is associative and has the empty qual- 
ifier as a unit: 

(I’) [flkql = PM, 
(II’) [tl !z;Al = [tld1 
(III’) [t I (p; q); rl = ii I p;(q;r)l. 
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For example, the left-hand side of rule (II’) simplifies 
to 

[t I GA1 
= {by (3)) 

join [It I4 I 41 
= {by (1)) 

join[ unit t 1 q] 

= {by (4)) 
join (map unit [t 1 q]) 

Taking [ 2 ] q] to be [z I z + u] and applying (5), it 
follows that (II’) is equivalent to join . map unit = id. 
Using a similar procedure for the other two rules, we 
have that (I’)-(III’) are equivalent, respectively, to 

(1) join . unit = id, 

(II) join. map unit = id, 

(IW join . join = join . map join. 

Laws (I)-(III) d o indeed hold for lists. For example: 

join (un;i[1,2]) = join [[1,2]] = [1,2], 
join (map unit [1,2]) = join [[l], [2]] = [l, 21, 

join (join [[PI, PII, [[3111> = join [PI, PI, [311 = FL 2,31, 
@n(mapjoin [[[11,[211, [13111> = join [P,21,[311 = [1,%31- 
Hence, it is sensible to omit parentheses around quali- 
fiers in list comprehensions. For instance, [t ] p; q; T-] 
stands for either side ofequation (111’). It is safe to drop 
empty qualifiers, so the only remaining comprehension 
containing an empty qualifier is [t ] A], which we will 
abbreviate as [ t 1. 

Obviously, the comprehension notation is sensible for 
any operator M on types together with functions map, 
uni2, and join of the appropriate types satisfying laws 
(i)-(iv) and (I)-(III). Such a triple (map, unit, join) 
is called a monad by category theorists [Mac71, LS86]. 
(Less imaginatively, it has also been called a “triple” 
[BW85].) 

In the following, we will often write the type M alone 
tostand for the monad (map, unit, join) where the func- 
tions can be understood from context. In particular, we 
will write List to stand for the monad of lists as de- 
scribed above. We will also write [t 1 qlM to indicate 
in which monad a comprehension is to be interpreted. 

There is exactly one clause in the definition of com- 
prehension for each component of a monad: rule (1) 
corresponds to unit, rule (2) to map, and rule (3) to 
join. Further, unit, map, and join can be expressed in 
terms of M-comprehensions: 

unit x = [x]M 
mapfT = [fx 1 x +-TIM 
join F = [x (5-F; x +-TIM. 

Here and in what follows, we adopt the convention that 
if x has type x, then F has type M x and 5 has type 
M (M x). 

(Moggi’s work assumes not only a monad, but a 
“strong monad” with some additional structure. As al- 
ready noted, M is a strong functor, and it follows from 
this that all the monads we consider are strong mon- 
ads. :In particular the tensorial strength, t :: (t, M y) -+ 
M (z, y), is defined by t XT = [(z, y) I y e T’]~.) 

We conclude with one final law of comprehensions, 
the comprehension substitution law. Let t, u be terms, 
p, q, T be qualifiers, and x a variable. Then 

(6) It I P; x - 14nl”; TIM = [C I P; 4; CY 

where 1,” and r,” are t and r with each instance of x 
replaced by u. This law follows from laws (l)-(4). Al- 
ternatively, if we take laws (5) and (6) as given, and de- 
fine unit, map, and join in terms of M-comprehensions 
as shown above, then laws (;)-(iv), (l)-(4), and (I)- 
(III) all follow. Thus, one may choose whether to take 
monads as primitive (axiomatised by laws (i)-(h) and 
(I)-(III)) and d e fi ne comprehensions in terms of mon- 
ads, or to take comprehensions as primitive (axioma- 
tised by laws (5) and (6)) and define monads in terms 
of comprehensions. 

Monads were conceived in the 1960’s, list comprehen- 
sions in the 1970’s. They have quite independent ori- 
gins, but fit with each other remarkably well. As often 
happens, a common truth may underlie apparently dis- 
parate phenomena, and it may take a decade or more 
before this underlying commonality is unearthed. 

3 Two trivial monads 

3.1 The identity monad 

The identity monad is the trivial monad specified by 

type Id x = x 
maprdfx = fx 
unitId 2 = x 
joinIdx = x, 

so mapId, unitId, and bindid are all just the identity 
function. A comprehension in the identity monad is 
like a “where” term: 

[t 1 x + u]Id 
= ((Ax + 2) u) 
= (2 where z = u). 

Similarly, a sequence of qualifiers corresponds to a se- 
quence of nested “where” terms: 

[t 1 x t u; y + w]Id 
= ((t where y = V) where x = u). 

Since y is bound after x it appears in the inner “where” 
term. In the following, comprehensions in the identity 
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monad will be written in preference to “where” terms, 
as the two are equivalent. 

(In the Hindley-Milner type system, X-terms and 
“where” terms differ in that the latter may introduce 
polymorphism. The key factor allowing “where” terms 
to play this role is that the syntax pairs each bound 
variable with its binding term. Since monad compre- 
hensions have a similar property, it seems reasonable 
that they, too, could be used to introduce polymor- 
phism. However, the following does not require com- 
prehensions that introduce polymorphism, so we leave 
exploration of this issue for the future.) 

3.2 The strictness monad 

Sometimes it is necessary to control order of evaluation 
in a lazy functional program. This is usually achieved 
with the computable function strict, defined by 

strict f x = if 3: # I then f 3: else 1. 

Operationally, slrictf I is reduced by first reducing z 
to weak head normal form (WHNF) and then reducing 
the application f 2. Alternatively, it is safe to reduce 
3: and f z in parallel, but not allow access to the result 
until 2 is in WHNF. 

We can use this function as the basis of a monad: 

type Str x = x 
mapSt’f 2 = strict f 2 
uldst x = x 
joinSt’ x = 2. 

This is identical to the identity monad, except for the 
definition of map . Str It is easy to verify that this does 
indeed satisfy the monad laws, (i)-(iv) and (Q-(111). 

The corresponding monad comprehension provides a 
simple way to control the evaluation order of lazy pro- 
grams, which we will make use of later. For instance, 
the operational interpretation of 

[t 1 x c- u; y + v ytr 

is as follows: reduce u to WHNF, bind x to the value 
of u, reduce v to WHNF, bind y to value of v, then 
reduce 1. Alternatively, it is safe to reduce 1, U, and v 
in parallel, but not allow access to the result until both 
u and 2~ are in WHNF. 

4 Manipulating state 

Procedural programming languages operate by assign- 
ing to a state; this is also possible in impure functional 
languages such as Standard ML. In pure functional lan- 
guages, assignment may be simulated by passing around 

a value representing the current state. This section 
shows how the monad of state transformers and the 
corresponding comprehension can be used to structure 
programs written in this style. 

4.1 State transformers 

Fix a type S of states. The monad of state transformers 
ST is defined by 

type STx = S- (x,S) 
mapSTfZ = As * [(fx,s’) 1 (x,s’) tZsyd 
anit”Tx = As 4 (x,s) 
joinST F = As + [(x,27”) 1 (T,s’) +-zs; 

(2, s”) + Fs’]‘d. 

(Recall the equivalence of Id-comprehensions and 
“where” terms as explained in Section 3.1.) A state 
transformer of type x takes a state and returns a value 
(of type z) and a (new) state. The unit takes the value 
I into the state transformer Xs --i (x,s) that returns x 
and leaves the state unchanged. It follows from these 
definitions that 

[(X,Y) Ix *f; Y +-TIST 
= As 4 [ ((2, y), s”) 1 (2, s’) + 37s; 

(y, s”) + Ts’]Id. 

This applies the state transformer F to the state s, yield- 
ing the value z and the new state s’; it then applies a 
second transformer 7 to the state s’ yielding the value 
y and the newer state s”; it finally returns a value con- 
sisting of x paired with y and the final state s”. 

Two useful operations in this monad are 

fetch :: STS 
fetch = As + (s,s) 

assign :: S 4 ST () 
assign s’ = As --+ (0, s’). 

The first of these fetches the current value of the state 
(leaving the state unchanged); the second discards the 
old state, assigning the new state to be the given value. 
Here () is the type that contains only the value 0. 

A third useful operation is 

init :: S+STxdx 
init s F = [x 1 (x,5’) tfs]‘d. 

This applies the state transformer Z to a given initial 
state s; it returns the value computed by the state trans- 
former while discarding the final state. 

4.2 Example: Renaming 

Say we wish to rename all bound variables in a lambda 
term. A suitable data type Term for representing 
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lambda terms is defined in Figure 1 (in Standard ML) 
and Figure 2 (in Haskell). New names are to be gener- 
ated by counting; we assume there is a function 

mkname :: Int + Name 

that given an integer computes a name. We also assume 
a function 

&St :: Name -+ Name -+ Term + Term 

such that subst x’ x t substitutes x’ for each occurrence 
of z in t. 

A soIution to this problem in an impure functional 
language is shown in Figure 1. This uses a reference N 
to an assignable storage location containing an integer, 
the current state. The “functions” and their types are: 

neumame :: () + Name, 
renamer :: Term --, Term, 
rename :: Term + Term. 

Note that newname and renamer are not true functions 
as they depend on the state. In particular, newname () 
returns a different name each time it is called, and hence 
requires a dummy parameter, 0. However, rename is a 
true function (it always generates new names starting 
from 0). Understanding the program requires a knowl- 
edge of which “functions” affect the state and which do 
not. This is not always easy to see - renamer is not a 
true function, even though it does not contain any di- 
rect reference to the state N, because it does contain 
an indirect reference through newname; but rename is 
a true function, even though it references renamer. 

An equivalent solution in a pure functional language 
is shown in Figure 2. This explicitly passes around an 
integer that is used to generate new names. The func- 
tions and their types are: 

newname :: Int + (Name, Int), 
renamer :: Term -+ Int --t (Term, Id), 
rename :: Term 4 Term. 

The function newname generates a new name from the 
integer and returns an incremented integer; the func- 
tion renamer takes a term and an integer and returns 
a renamed term (with names generated from the given 
integer) paired with the final integer generated. The 
function rename takes a term and returns a renamed 
term (with names generated from 0). This program is 
straightforward, but can be difficult to read because it 
contains a great deal of “plumbing” to pass around the 
state. It is relatively easy to introduce errors into such 
programs, by writing n where n’ is intended or the like. 
This “plumbing problem” can be more severe in a pro- 
gram of greater complexity. 

Finally, a solution of this problem using the monad 
of state transformers is shown in Figure 3. The state 
is taken as S = Int. The functions and their types are 
now: 

newname :: ST Name, 
renamer :: Term 4 ST Name, 
rename :: Term + Term. 

The monadic program is simply a different way of writ- 
ing the pure program. Types in the monadic program 
can be seen to correspond directly to the types in the im- 
pure program: an impure “function” of type x + y that 
affects the state corresponds to a pure function of type 
x + ST y. Thus, renamer has type Term + Term in 
the impure program, and type Term ---f ST Term in the 
monadic program; and newname has type () -+ Name 
in the impure program, and type ST Name, which is 
isomorphic to () + ST Name, in the pure program. 
Unlike the impure program, types in the monadic pro- 
gram make it manifest where the state is affected (and 
so do the ST-comprehensions). 

The “plumbing” is now handled implicitly by the 
state transformer rather than explicitly. Various kinds 
of errors that are possible in the pure program (such 
as accidentally writing n in place of n’) are impossi- 
ble in the monadic program. Further, the type sys- 
tem ensures that plumbing is handled in an appropriate 
way. For example, one might be tempted to write, say, 
App (renamer 2) ( renamer u) for the right-hand side of 
the last equation defining renamer, but this would be 
detected as a type error. 

Safety can be further ensured by making ST into an 
abstract data type on which mapST, unitST, joinST, 
fetch, assz’gn, and init are the only operations. This 
guarantees that one cannot mix the state transformer 
abstraction with other functions which handle the state 
inappropriately. This idea will be pursued in the next 
section. 

Impure functional languages (such as Standard ML) 
are restricted to using a strict (or call-by-value) order 
of evaluation, because otherwise the effect of the assign- 
ments becomes very difficult to predict. Programs using 
the monad of state transformers can be written in lan- 
guages using either a strict (call-by-value) or lazy (call- 
by-name) order of evaluation. The state-transformer 
comprehensions make clear exactly the order in which 
the assignments take effect, regardless of the order of 
evaluation used. 

Reasoning about programs in impure functional lan- 
guages is problematic (although not impossible - see 
[MT891 for one approach). In contrast, programs writ- 
ten using monads, like all pure programs, can be rea- 
soned about in the usual way, substituting equals for 
equals. They also satisfy additional laws, such as the 

66 



datatype Term = Var of Name 1 Lam of Name * Term 1 App of Term * Term; 
fun rename t = let 

val N = ref0; 

fun newname () = let n = !N; () = (N := n + 1) in mkname n; 

fun renamer ( Var x) = Varx 

I renamer(Lam (x,1)) = let x’ = newname () in 
Lam (x’, subst I’ x (renamer t)) 

1 renamer(App (t, u)) = App(renamert, renameru) 
in 

renamer t; 

Figure 1: Renaming in impure functional language (Standard ML) 

data Term = 

newname :: 
newname n = 

renamer . . . . 
renamer ( Var z) n = 
renamer (Lam x t) n = 

renamer(App t u) n = 

rename 
rename t 

:: 
= 

Var Name 1 Lam Name Term ) App Term Term 

lnt + (Name, Int) 
(mkname n, n + 1) 

Term -+ Int ---i (Term, Int) 
( VUT z, n) 
(Lam x’ (su bst x’ x t’) , n”) where 

( x’, n’) = newname n 
(t’, n”) = renamer t n’ 

(App t’u’, n”) where 
(t’, n’) = renamer t n 

(u’, 72”) = renamer u n’ 

Term -+ Term 
1’ where (t’, n’) = renamer t 0 

Figure 2: Renaming in pure functional language (Haskeil) 

data Term = VarName 1 Lum Name Temn 1 App Term Temz 

newname ‘. ST Name 
newname = [mkname n 1 n + fetch; () + assign (n + l)lST 

renamer .. Term + ST Term 
renamer ( Vur x) = [ Vurx]l”T 
renamer (Lam x t) = [Lam x’ (subs2 I’ x 1’)) 1 I’ c newname; 2’ + renamer t JST 
renamer(App t u) = [App 1’ u’ I 1’ + renamert; u’ t renumerulST 

rename :: Term -+ Term 
rename t = init 0 (renumer t) 

Figure 3: Renaming with the monad of state transformers 
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following laws on qualifiers: 

2 c fetch; y c fetch = 2 4- fetch; y c [xlST, 
() c assign x; y t fetch = () 4- assign x; y t [xlST, 

() + assign x; () + assign y = () + assign y, 

and on terms: 

initx[p- = t, 
initx[t 1 qlST = init 2 [t 1 () e assign 2; Q]~*, 

initx[t 1 q; () t- assigny] = initx[t 1 q]. 

These, combined with the monad laws (l)-(6), allow 
one to use equational reasoning to prove properties of 
programs that manipulate state. 

4.3 Array update 

Let ATT- be the type of arrays taking indexes of type 1x 
and yielding values of type Val. The key operations on 
this type are 

newarray :: Val --t Arr, 
index :: Ix -+ Arr-+ Val, 
update :: Ix + Vu1 + Arr + Arr. 

Here newarray 21 returns an array with all entries set to 
v; and index i a returns the value at index i in array a; 
and update i v a returns an array where index i has value 
v and the remainder is identical to a. In equations, 

index i(newwmyv) = v, 
index i (update i v a) = v, 
index i (update i’ v a) = index i a, if i # i'. 

The efficient way to implement the update operation is 
to overwrite the specified entry of the array, but in a 
pure functional language this is only safe if there are 
no other pointers to the array extant when the update 
operation is performed. 

Now consider the monad of state transformers taking 
the state type S = Arr, so that 

type ST x = Arr + (x, Arr). 

Variants of the fetch and assign operations can be de- 
fined to act on an array entry specified by a given index, 
and a variant of inil can be defined to initialise all en- 
tries in an array to a given value: 

fetch :: Ix ---t ST Val 
fetch i = Au -+ [(v, a) ] v + index i alst’ 

assign :: Ix --, Val 4 ST() 
assign i v = Aa - (0, update i v a) 

init :: Vu1 + ST x -+ x 
init VZ = [ 2 1 (x, a) t ?(newarray v)]Id. 

A Str-comprehension is used in fetch to force the entry 
from a to be fetched before a is made available for fur- 
ther access; this is essential in order for it to be safe to 
update a by overwriting. 

Now, say we make ST into an abstract data type 
such that the only operations on values of type ST are 
maps*, units=, joins=, fetch, assign, and init. It is 
straightforward to show that each of these operations, 
when passed the sole pointer to an array, returns as its 
second component the sole pointer to an array. Since 
these are the only operations that may be used to build a 
term of type ST, this guarantees that it is safe to imple- 
ment the assign operation by overwriting the specified 
array entry. 

The key idea here is the use of the abstract data 
type. Monad comprehensions are not essential for this 
to work, they merely provide a desirable syntax. 

4.4 Example: Interpreter 

Consider building an interpreter for a simple imperative 
language. The store of this imperative language will be 
modelled by a state of type Arr, so we will take Ix to 
be the type of variable names, and Val to be the type of 
values stored in variables, The abstract syntax for this 
language is represented by the data types shown in Fig- 
ure 4. The language consists of expressions, commands, 
and programs: 

data Exp = Var 13: I Const Val 1 Plus Exp Exp 
data Corn = Asgn Ix Exp I Seq Corn Corn 

1 If Exp Corn Corn 
data Prog = Prog Corn Exp. 

An expression is a variable, a constant, or the sum of two 
expressions; a command is an assignment, a sequence of 
two commands, or a conditional; and a program consists 
of a command followed by an expression. 

A version of the interpreter in a pure functional lan- 
guage is shown in Figure 4. The interpreter can be read 
as a denotational semantics for the language, with three 
semantic functions: 

exp :: Exp + Arr + Val, 
corn :: Corn + Arr --+ Arr, 

Prog :: Prog 4 Val. 

The semantics of an expression takes a store into a value; 
the semantics of a command takes a store into a store; 
and the semantics of a program is a value. A program 
consists of a command followed by an expression; its 
value is determined by applying the command to an ini- 
tial store where all variables have the value 0, and then 
evaluating the expression in the context of the resulting 
store. 
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exp 
exp ( Var i) a 
exp (Cod v) a 
exp (Plus el ez) a 

corn 
corn (Asgn i e) a 
corn (Seq cl 02) a 
corn (If e cl c2) a 

P w 
prog (Prog c e) 

. . . . 
= 
= 
= 

. . . . 
= 
= 
= 

:: 
= 

Exp + Arr + Val 
lookup i a 
V 

exp el a -t- exp e2 a 

Com+Arr+Arr 
update i (exp e a) a 
corn c-2 (corn cl a) 
if exp e a = 0 then corn cl a else corn c2 a 

Prog + Val 
exp e (corn c (newarray 0)) 

Figure 4: Interpreter in a pure functional language 

9 
exp ( VW i) 
exp (Const v) 
exp (Plus el e2) 

corn 
corn (Asgn i e) 
corn (Seq cl cz) 
corn (If e cl ~2) 

P w 
prog (Prog c e) 

. . . 
= 
= 
= 

:: 
= 
= 
= 

. . . . 
= 

Exp 4 ST Val 
[v 1 v c fetch ilsT 

blST 
[ 81 + ~2 I ~1 - exp el; 9~2 t exp e21ST 

Corn ----) ST () 
[()I~cexpee;()cassigniv]~~ 

[() 1 () +-- corn cl; (> + corn c21ST 
to I v - exp e; 0 t if v = 0 then corn cl else corn c21ST 

Prog --, Val 
init 0 [ 21 1 () t corn c; v + exp elsT 

Figure 5: Interpreter with state transformers 

exp 
exp ( Var i) 
exp (Const v) 
exp (Plus el ez) 

corn 
corn (Asgn i e) 
corn (Seq cl cg) 
corn (If e cl ~2) 

PT 
prog (Prog c e) 

:: Exp + SR Val 
= [v ) v +fetch ilSR 
= [v]ST 
= [ 211 + v2 1 211 6 exp el; v2 t exp e2 lSR 

*- Corn + ST () 

ii MI v c TO (exp e); () - assign i vlST 
= [() 1 () + corn cl; () + corn c21sT 
= [()Iv-T-o(expe);()tifv=Othencomclelsecomcz]ST 

:: Prog + Val 
= indO[v I() i- corn c; v t ro(exp e)lST 

Figure 6: Interpreter with state transformers and readers 
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The interpreter uses the array operations newarray, 
index, and update. As it happens, it is safe to perform 
the updates in place for this program, but to discover 
this requires using one of the special analysis techniques 
cited in the introduction. 

The same interpreter has been rewritten in Figure 5 
using state transformers. The semantic functions now 
have the types: 

exp :: Exp -+ ST Val, 
corn :: Com + ST 0, 

PW :: Frog -* Val. 

The semantics of an expression depends on the state and 
returns a value; the semantics of a command transforms 
the state only; the semantics of a program, as before, 
is just a value. According to the types, the semantics 
of an expression might alter the state, although in fact 
expressions depend the state but do not change it - we 
will return to this problem shortly. 

The abstract data type for ST guarantees that it is 
safe to perform updates (indicated by assign) in place 
- no special analysis technique is required. It is easy 
to see how the monad interpreter can be derived from 
the original, and (using the definitions given earlier) the 
proof of their equivalence is straightforward. 

The program written using state transformers has a 
simple imperative reading. For instance, the line 

corn (Seq cl 122) = [ (> 1 () + corn cl; () + corn Cal”* 

can be read “to evaluate the command Seq cl ~2, first 
evaluate cl and then evaluate ~2”. The types and the 
use of the ST comprehension make clear that these op- 
era.tions transform the state; further, that the values 
ret.nrned are of type () makes it clear that only the ef- 
fect on the state is of interest here. 

One drawback of this program is that it introduces 
too much sequencing. The line 

exp (Plus el e2) 
= [ vl + v2 1 211 +- exp el ; v-2 - exp e2 ] ST 

can be read “to evaluate Plus ei es, first evaluate ei 
yielding the value ~1, then evaluate e2 yielding the value 
712, then add vi and us”. This is unfortunate: it imposes 
a spurious ordering on the evaluation of ei and es (the 
original program implies no such ordering). The order 
does not matter because although exp depends on the 
state, it does not change it. But, as already noted, there 
is no way to express this using just the monad of state 
transformers. To remedy this we will introduce a second 
monad, that of state readers. 

4.5 State readers 

Recall that the monad of state transformers, for a fixed 
type S of states, is given by 

typeSTx = S+(x,S) 

The monad of state readers, for the same type S of 
states, is given by 

type SRx = S-+(x,S) 
mapsRf 2 = As ---L [fx 1 E + zsyd 
uniiSR x = As--+x 
joinSR$ = As + [x 1 E + 2s; x +- 3slrd. 

Here 2 is a variable of type SR z, just as ?i? is a variable 
of type ST x. A state reader of type x takes a state and 
returns a value (of type x), but no new state. The unit 
takes the value x into the state transformer Xs + x that 
ignores the state and returns z. It follows from these 
definitions that 

[(X,Y> Ix +T Y GISR 
= As - [(X,Y> I 2 +-- 2s; y + 5syd 

This applies the state readers 2 and ji to the state s, 
yielding the values x and y, which are returned in a 
pair. 

It is easy to see for this monad that 

[(X,Y) Ix +--p; Y +YISR 
= [(x,y)Iy4j;x+qSR, 

so that the order in which 2 and 3 are computed is 
irrelevant. A monad with this property is called com- 

m&alive, since it follows from this that 

It I P; qlSR = [t 19; PFR 

for any term t, and any qualifiers p and q such that p 
binds no free variables of q and vice-versa. Thus state 
readers capture the notion of order independence that 
we desire for expression evaluation in the interpreter 
example. 

Two useful operations in this monad are 

fetch :: SR S 
fetch = As ---) s 

l-0 :: SRx -rSTx 
TOI? = As + [(x,s) 1 x t 3s]‘d. 

The first is the equivalent of the previous fetch, but now 
expressed as a state reader rather than a state trans- 
former. The second converts a state reader into the 
corresponding state transformer: one that returns the 
same value as the state reader, and leaves the state un- 
changed. (The name TO abbreviates “read only” .> 
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In the specific case where S is the array type Arr, we 
define 

fetch :: Ix-+SRVal 
fetch i = Xa + index i a. 

In order to guarantee the safety of update by over- 
writing, it is necessary to modify two of the other 
definitions to use Sir-comprehensions rather than Id- 
comprehensions: 

mapSRfZ = Xa 4 [f x 1 x c F alStr 
7-03 = Aa -+ [(x,a) Ix +Zu]str 

These correspond to the use of an Str-comprehension in 
the ST version of fetch. 

Thus, for arrays, the complete collection of operations 
on state transformers and state readers consists of 

fetch :: Ix+SRVal, 
assign :: Ix ---) Vu1 ---) ST 0, 
l-0 :: SRx ---) STx, 
init :: Val--) STx J x, 

together with mapSR, unitSR, joinsR and mapST, 
unitST, joinST. These ten operations should be de- 
fined together and constitute all the ways of manip- 
ulating the two mutually defined abstract data types 
SR x and ST x. It is straightforward to show that each 
operation of type SR, when passed an array, returns 
a value that contains no pointer to that array once it 
has been reduced to weak head normal form (WHNF); 
and that each operations of type ST, when passed the 
sole pointer to an array, returns as its second compo- 
nent the sole pointer to an array. Since these are the 
only operations that may be used to build values of 
types SR and ST, this guarantees that it is safe to im- 
plement the assign operation by overwriting the speci- 
fied array entry. (The reader may check that the Str- 
comprehensions in mapSR and ro are essential to guar- 
antee this property.) 

Returning to the interpreter example, we get the new 
version shown in Figure 6. The only difference from the 
previous version is that some occurrences of ST have 
changed to SR and that ro has been inserted in a few 
places. The new typing 

exp :: Exp -+ SR Val 

makes it clear that exp depends on the state but does 
not alter it. A proof that the programs in Figures 5 
and 6 are equivalent is given in Section 6. 

The excessive sequencing of the previous version has 
been eliminated. The line 

exp (Plus el ez) 
= [2rl + v2 1 vl + expel; 2.9 + exp:p21sR 

can now be read “to evaluate Plus ei e2, evaluate ei 
yielding the value ~1 and evaluate e2 yielding the value 
~2, then add vi and vz”. The order of qualifiers in an 
SR-comprehension is irrelevant, and so it is perfectly 
permissible to evaluate el and e2 in any order, or even 
concurrently. 

The interpreter derived here is similar in structure 
to one in [WadSO], which uses a type system based on 
linear logic to guarantee safe destructive update of ar- 
rays. (A similar type system is discussed in [GH90].) 
However, the linear type system uses a “let!” construct 
that suffers from some unnatural restrictions: it requires 
hyperstrict evaluation, and it prohibits certain types in- 
volving functions. By contrast, the monad approach re- 
quires only strict evaluation, and it places no restriction 
on the types. This suggests that a careful study of the 
monad approach may lead to an improved understand- 
ing of linear types and the “let!” construct. 

5 Filters 

So far, we have ignored another form of qualifier found 
in list comprehensions, the filter. For list comprehen- 
sions, we can define filters by 

[f 1 b] = if b then [Z] else [], 

where b is a boolean-valued term. For example, 

[z 1 x +- [1,2,3]; oddx] 
= join[(x 1 oddx] 1 x t [1,2,3]] 
= join[[l 1 oddl],[2 1 odd2],[3 1 odd311 

1 ;;i;; PI! [I! PI1 
t . 

Can we define filters in general for comprehensions in an 
arbitrary monad M? The answer is yes, if we can define 
[] for M. Not all monads admit a useful definition of [I, 
but many do. 

Recall that M-comprehensions of the form [t] are de- 
fined in terms of the qualifier A, by taking [ 11 = [t 1 A], 
and that A is a unit for qualifier composition, 

Similarly, we will define M-comprehensions of the form 
[] in terms of a new qualifier, 0, by taking [] = [2 ] 01, 
and we will require that 0 is a zero for qualifier compo- 
sition, 

PI& d = P I01 = [i IQ; 01. 
Unlike with [i]A], the value of [tl0] is independent of t! 

To define A we introduced a function unit :: x + M x 
satisfying the laws 

(iii) mapf 1 unit = unit, 

(0 join . unit = id, 

(III) join . map unit = id, 
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and then taking [t 1 A] = unit t. Similarly, to define 0 
we introduce a function 

zero:: y-+Mx, 

satisfying the laws 

(u) mapf . zero = zero .g, 

g' 

join . zero = zero, 
join . map zero = zero. 

Law (v) specifies that the result of zero is independent 
of its argument; it follows immediately from the type 
of zero (again, see [Ftey83, Wad891 for the reason). In 
the case of lists, setting zero y = [] makes the last two 
laws hold, because join [] = [J and join [[I,. . . , []] = []. 
(This ignores what happens when zero is applied to I, 
which will be considered below.) 

In general, if any monad (map, unit, join) also pos- 
sesses a zero satisfying the three laws above, then we 
can define [] in this monad by taking [] = zero t for 
a.ny 2. Moreover, we can extend comprehensions in this 
monad to contain a new form of qualifier, the filter, de- 
fined by 

(7) [ t 1 b] = if b then unit t else zero t, 

where b is any boolean-valued term. For this extended 
definition of qualifiers, we can show that laws (4) and 
(6) still hold. We also have the new laws 

(8) [t I b; cl = Et I(bAc)l, 
(9) Plq;bl = Plb;ql, 

where b and c are boolean-valued terms, and where q 
is any qualifier not binding variables used in 6. 

When dealing with I as a potential value, more care 
is required. In a strict language, where all functions 
(including zero) are strict, there is no problem. But in 
a lazy language, in the case of lists, laws (v) and (IV) 
hold, but law ( V) is an inequality, join.map zero E zero, 
since join (map zero) I = L but zeroi = []. In this 
case, laws (l)-( 8) are still valid, but law (9) holds only 
if [1 I q] # 1. In the case that [2 I q] = I, law (9) 
becomes an inequality, [t 1 q; b] & [t I b; q]. 

As a second example of a monad with a zero, consider 
the strictness monad Str defined in Section 3.2. For this 
monad, a zero may be defined by zeroSt’ y = 1. It is 
easy to verify that the required laws hold; unlike with 
lists, the laws hold even when zero is applied to 1. For 
example, [ 1: - 1 1 2: 2 1 jStr returns one less than 2 if 1: 
is positive, and I otherwise. 

6 Monad morphisms 

If M and N are two monads, then h :: M x ---t N x 
is a monad morphism from M to N if it preserves the 

monad operations: 

h.map”f 
h . unitM 
h - joinM 

where h2 = h-mapM h = 

= map*f .h, 
z unit*, 
= join* . h’, 

map * h. h (the two composites 
_ . 

are equal by the first equation). 
Define the effect of a monad morphism on qualifiers 

as follows: 

h(A) = A, 
h(x c u) = 2 + (h 4, 
h(p; q) = (W; (h 9). 

It follows that if h is a monad morphism from M to N 
then 

(*I W I #” = [t I&A* 
for all terms i and qualifiers q. The proof is a simple 
induction on the form of qualifiers. 

As an example, it is easy to check that unitM :: 
x + M x is a monad morphism from Id to M. It follows 
that 

[[t 1 x + u]yM = [tlx+[u]“]M. 

This explains a trick occasionally used by functional 
programmers, where one writes the qualifier z +- [U ] 
inside a list comprehension to bind x to the value of U, 
that is, to achieve the same effect as the qualifier x + u 
in an Id comprehension. 

As a second example, the function ro from Section 4.5 
is a monad morphism from SR to ST. This can be 
used to prove the equivalence of the two interpreters 
in Figures 5 and 6. Write expsT :: Ezp -+ ST Val 
and expSR :: Exp + SR Val for the versions in the two 
figures. The equivalence of the two versions is clear if 
we can show that 

ro . exp SR I ezpST. 

The proof is a simple induction on the structure of ex- 
pressions. In the case that the expression has the form 
(Plus el e2), we have that 

ro ( expSR (Plus el ez)) 
= {unfolding expsR} 

ro[u~+vzIu~+exp”~ el; 212 + expsR e2 lsR 

= PY (*)I 
[ v1 + v2 1 v1 + ro ( expsR el); vz t ro ( expSR e2)lsT 

= {hypothesis} 
[VI + 212 1 VI + expsT el; ~2 4- expST e21ST 

= {folding expST) 
expST (Plus el ez). 

The other two cases are equally simple. 
All of this extends straightforwardly to monads with 

zero. In this case we also require that h .zeroM = N zero , 
define the action of a morphism on a filter by h b = b, 
and observe that (*) holds even when q contains filters. 
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7 More monads 

This section describes three more monads: parsers, ex- 
pressions, and continuations. The basic techniques are 
not new (parsers are discussed in [Wad85, Fai87, FL89], 
and exceptions are discussed in [Wad85, Spi89]), but 
monads and monad comprehensions provide a conve- 
nient framework for their expression. 

7.1 Parsers 

The monad of parsers is given by 

type Parse x = String --* List (x, String) 

map 
Parse F f = Xi --+ [(f x,i’) 1 (x,i’) +FilList 

unitParse x = Xi + [ (2, i)lLiSt 
join Parse ~ = Xi--k [(x,i”) 1 (T,i’)t?j; 

(2, j”) c f j’ IList. 

Here String is the type of lists of Char. Thus, a parser 
accepts an input string and returns a list of pairs. The 
list contains one pair for each succesful parse, consisting 
of the value parsed and the remaining unparsed input. 
An empty list denotes a failure to parse the input. It 
follows from these definitions that 

[(t,y) Ix +-F; y +T]Parse 
= Xi + [((x, y), i”) [ (2, i’) + Zi; 

(y, i”) + 7Jj’lList. 

This applies the first parser to the input, binds x to 
the value parsed, then applies the second parser to the 
remaining input, binds y to the value parsed, then re- 
turns the pair (x, y) as the value together with input 
yet to be parsed. If either i? or 7 fails to parse its input 
(returning an empty list) then the combined parser will 
fail as well. 

There is also a suitable zero for this monad, given by 

zeroParse y = Ai 4 pt. 

Thus, [IParse is the parser that always fails to parse 
the input. It follows that we may use filters in Parse- 
comprehensions as well as in List-comprehensions. 

The alternation operator combines two parsers: 

(II) :: Parse x ---f Parse x * Parse x 
T[?j = Ai + (Zi) -it (7;). 

(Here +I- is the operator that concatenates two lists.) It 
returns all parses found by the first argument followed 
by all parses found by the second. 

The simplest parser is one that parses a single char- 
acter: 

next :: Parse Char 
next = Xi -+ [(head i, tail i) 1 not (null i) IList. 

Here we have a List-comprehension with a filter. The 
parser next succeeds only if the input is non-empty, in 
which case it returns the next character. Using this, we 
may define a parser to recognise a literal: 

lit :: Char + Purse () 
lit c = [() 1 c’ + next; c = c’]parse. 

Now we have a Purse-comprehension with a filter. The 
parser iii c succeeds only if the next character in the 
input is c. 

As an example, a parser for fully parenthesised 
lambda terms, yielding values of the type Term de- 
scribed previously, can be written as follows: 

term :: Parse Term 
term = [ Vur x 1 3: 4- namelParSe 

0 [Lam 2 t ) () t lit ‘(‘; () c Iit ‘X’; 
x t name; () c lit ‘-+‘; 
t t term; () + fit ‘)‘]parse 

0 [ App t u 1 () t lit ‘(‘; t t term; 
u t term; () t lit ‘)‘jParse 

name :: Parse Name 
name = [ c 1 c +- next; ‘a’ < c; c 5 ‘z’lParse. 

Here, for simplicity, it has been assumed that names 
consist of a single lower-case letter, so Name = Char; 
and that A and -) are both characters. 

7.2 Exceptions 

The type Maybe x consists of either a value of x, written 
Just x, or an exceptional value, written Nothing: 

data Maybe x = Just x 1 Nothing. 

(The names are due to Spivey [Spi89].) The following 
operations make this into a monad: 

map Maybe f (Just x) = Just (f x) 
map Maybe f Nothing = Nothing 

unitMaybe x = Just x 

joinMaYbe (Just (Just x)) = Just x 
join Maybe (Just Nothing) = Nothing 
joinM4ybe Nothing = Nothing. 

It follows from these definitions that 

[(x, y) 1 x - 5’; y - qMaybe 

returns Just (x, y) if ZF is Just x and 7 is Just y, and 
otherwise returns Nothing. 

There is also a suitable zero for this monad, given by 

zeroMaYb e Y = Nothing. 
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Hence [IMaybe = Nothing and [ xlMaybe = JUST 2. For 
example, [ 2: - 1 1 z 2 llMaybe returns one less than z if 
x is positive, and Nothing otherwise. 

Two useful operations test whether an argument cor- 
responds to a value and, if so, return that value: 

exists :: Maybe x + Boo1 
exists (Just x) = True 
exists Nothing = False 

the :: Maybe x -+ x 
the (Just x) = t. 

Observe that 

[the T 1 existsTIMaybe = F 

for all ?i? :: Maybe 2. If we assume that (the Nothing) = 
I, it is easily checked that the is a monad morphism 
from Maybe to Str, and corresponds to the usual trick 
of considering error values and I to be identical. We 
have that 

a.s an immediate consequence of the monad morphism 
law. 

The biased-choice operator chooses the first of two 
possible values that is well defined: 

(3 :: Maybe x -+ Maybe x + Maybe x 
Z?Tj = if exists f then T else 3, 

The ? operation is associative and has Nothing as a 
unit. It appeared in early versions of ML [GMW79], 
and similar operators appear in other languages. As an 
example of its use, the term 

the ([x - 1 1 x > llMaybe ? [ OIMaybe) 

returns the predecessor of x if it is non-negative, and 
zero otherwise. 

In [Wad851 it was proposed to use lists to represent 
exceptions, encoding a value x by the unit list, and an 
exception by the empty list. This corresponds to the 

map 

maybe :: Maybe x -+ List x 
maybe (Just x) = [ xlList 
maybe Nothing = [IList 

which is a monad morphism from Maybe to List. We 
have that 

maybe (Z??j) 2 (maybeT) -it (maybe?j), 

where & is the sublist relation. Thus, exception compre- 
hensions can be represented by list comprehensions, and 
biased choice can be represented by list concatenation. 
The argument in [Wad851 that list comprehensions pro- 
vide a convenient notation for manipulating exceptions 
ca.n be mapped, via this morphism, into an argument in 
favour of exception comprehensions! 

7.3 Continuations 

Fix a type R of results. The monad of continuations is 
given by 

type Cont x = (x + R) + R 
mapCont f 3 = Ak-GqAx-+k(fx)) 
unit “71~ x = Xk+kx 

join Cant y = Ak ---, ?(A57 --f ??(Ax 3 k x)). 

A continuation of type x takes a continuation function 
k :: x + R, which specifies how to take a value of 
type x into a result of type R, and returns a result of 
type R. The unit takes a value x into the continuation 
Xk + k x that applies the continuation function to the 
given value. It follows from these definitions that 

[ (2, y) 1 x t f; y c 7pt 
= Xk -+I(Xx - ?Ji(Xy --+ k (x, Y))). 

This can be read as follows: evaluate Z, bind x to the 
result, then evaluate 8, bind y to the result, then return 
the pair (2, y). 

A useful operation in this monad is 

callcc :: ((x --t Cont y) + Cont x) -+ Cont 2 
callcc g = Xk-+g(Xx-+Ak’--+kx)k. 

This mimics the “call with current continuation” (or 
call-cc) operation popular from Scheme [RCXG]. For 
example, the Scheme program 

(call-cc (lambda (esc) 

U x (if (= Y 0) (esc 42) Y>>>> 

translates to the equivalent program 

callcc (Xesc -+ 
[z/zIzeify= 0 then esc 42 else y ] ‘On’. 

Both of these programs bind esc to an escape function 
that returns its argument as the value of the entire callcc 
expression. They then return the value of x divided by 
y, or return 42 in the case that y is zero. 

8 Translation 

In Section 4, we saw that a function of type x - y in 
an (impure) functional language that manipulates state 
corresponds to a function of type x + ST y in a (pure) 
functional program. The correspondence was drawn in 
an informal way, so we might ask, what assurance is 
there that every program can be translated in a similar 
way? This section provides that assurance, in the form 
of a translation of lambda calculus into an arbitrary 
monad. This allows us to translate not only programs 
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t,hat manipulate state, but also programs that raise ex- 
ceptions, call continuations, and so on. Indeed, we shall 
see that there are two translations, one call-by-value and 
one call-by-name. The target language of both transla- 
t.ions is a pure, non-strict X-calculus, augmented with 
M-comprehensions. 

We will perform our translations on a simple typed 
lambda calculus. We will use T, CJ, V to range over 
t,ypes, and K to range over base types. A type is either 
a. base type, function type, or product type: 

T,U,V ::= KJ(U--, V)l(U,V>. 

We will use f, U, v to range over terms, and z to range 
over variables. A term is either a variable, an abstrac- 
tion, an application, a pair, or a selection: 

t,u,v ::= x 1 (Xx -+ v> I (t u) I (u, VI I w 1) I (snd 4. 

We will use A to range over assumptions, which are lists 
associating variables with types: 

A ::= x1:: Tl,...,zn :: T,,. 

We write the typing A l- 1 :: T to indicate that under 
assumption A the term t has type T. The inference 
rules for well-typings in this calculus are well known, so 
they are omitted to save space. 

The call-by-value translation of lambda-calculus into 
a. monad M is given in Figure 7. The translation of the 
type T is written T’ and the translation of the term 1 
is written i*. The rule for translating function types, 

(V-+ v>* = V”--+M V’, 

can be read “a call-by-value function takes as its argu- 
ment a value of type U and returns a computation of 
t,ype V." This corresponds to the translation in Sec- 
tion 4, where a function of type z -+ y in the (im- 
pure) source language is translated to a function of type 
z 4 M y in the (pure) target language. Each of the 
rules for translating terms has astraightforward compu- 
tational reading. For example, the rule for applications, 

(tu)* = [%)x+t*;y+u*;%+(xy)]“, 

can be read “to apply t to U, first evaluate t (call the 
result x), then evaluate u (call the result y), then apply 
T to y (call the result z) and return 2.” This is what one 
would expect in a call-by-value language - the argument 
is evaluated before the function is applied. If 

x1 :: Tl,...,x, :: T,, I- 2 :: T 

is a well-typing in the source language, then its transla- 
tion 

x1:: T;,...,x, :: T,: t 1' ::M T' 

Types 

K* = IC 

(U-, V)’ = (U*-,MV*) 

(V, v>* = (cl', V') 

Terms 

* 

;A 

= [x]M 

x 4 v>* = [(Xx + v’)JM 

(1 u)* = [r(xtt*;ytu*;%+(xy)]M 

h v>* = [(x,y) 1 x t u*; y + v’]M 

w 0’ = [ (fst x) 1 2 + t*lM 

Environments 

(x1 :: TI,...,~, :: Tn)+ 
= xl :: T;, . . ..x. :: T; 

Typings 

(At 1:: T)' = A'!- I* ::MT* 

Figure 7: Call-by-value translation. 

is a well-typing in the target language. Like the ar- 
guments of a function, the free variables correspond to 
values, while, like the result of a function, the term cor- 
responds to a computation. 

The call-by-name translation of J-calculus into a 
monad M is given in Figure 8. Now the translation 
of the type T is written T+ and the translation of the 
term 2 is written ft. The rule for translating function 

types, 
(Lb')+ = MU+*MV+, 

can be read “a call-by-name function takes as its argu- 
ment a computation of type U and returns a computa- 
tion of type V." The rule for applications, 

(t u)+ = [y 1 x + t+; y t (x u+)]M, 

can be read “to apply 1 to U, first evaluate t (call the 
result I), then apply x to the term u (call the result 
y) and return y.” This is what one would expect in a 
call-by-name language - the argument u is passed un- 
evaluated, and is evaluated each time it is used. The 
well-typing in the source language given previously now 
translates to 

xl :: MT;,., .,I, ::M T; t t+ ::M T+, 

which is again a well-typing in the target language. This 
time both the free variables and the term correspond to 
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Types 

K+ = K 

(U + V)+ = (M U+ + M V+) 

(U, v>+ = (M U+, M V+) 

Terms 

x+ = x 

(Xx + v)+ = [(Ax + v+> y 

(1 u>+ = [y Ix c-t+; y +(xu+)p 

(u, v>+ = [(ut, V’)pf 

(fst t)+ = [yIm--t+;y~(fstz)]M 

Environments 

(21 :: Tl,...,X, :: T,,)+ 

= x1 :: M Tj, . . . ,x, :: M T,! 

Typings 

(A I- t :: T)+ = A+ I- t+ :: M T+ 

Figure 8: Call-by-name translation. 

computations, reflecting that in a call-by-value language 
the free variables correspond to computations (or clo- 
sures) that must be evaluated each time they are used. 

In particular, the call-by-value intrepretation in the 
strictness monad Sir of Section 3.2 yields the usual 
strict semantics of /\-calculus, whereas the call-by-name 
interpretation in the same monad yields the usual lazy 
semantics. 

If we use the monad of, say, state transformers then 
the call-by-value interpretation yields the usual seman- 
tics of a Lcalculus with assignment. The call-by-name 
interpretation yields a semantics where the state trans- 
formation specified by a variable occurs each time the 
variable is accessed. This explains why the second trans- 
l&ion is titled call-by-name rather than call-by-need. Of 
course, since the target of both translations is a pure, 
non-strict X-calculus, there is no problem with execut- 
ing translated programs under a lazy (i.e., call-by-need) 
implementation. 

8.1 Example: Non-determinism 

As a more detailed example of the application of the 
translation schemes, consider a small non-deterministic 
language. This consists of the X-calculus as defined 
above with its syntax extended to include a non- 

deterministic choice operator (t-t) and simple arithmetic: 

t,u,v ::= 9.. I (t LJ u) I n I (t + 4, 

where n ranges over integer constants. This language 
is typed just as for lambda calculus. We assume a base 
type Int, and the additional constructs typed as follows: 
foranytypeT,ifL:: Tandu:: Tthen(1Uu):: T;and 
n :: Int; and if t :: Int and u :: Int then (1 + u) :: Int. 
For example, the term 

((Au --+ a + a) (1 U 2)) 

has the type ht. Under a call-by-value interpretation 
we would expect this to return either 2 or 4 (i.e., 1 + 1 
or 2 + 2), whereas under a call-by-name interpretation 
we would expect this to return 2 or 3 or 4 (i.e., I+ 1 or 
1+2or2+1or2+2). 

We will give the semantics of this language by inter- 
preting the X-calculus in the set monad. This is speci- 
fied, as one would expect, by 

mapSetfT = {f1:Ix-l 
unit Set x = {xl 

joinSet~ 

= us. 

It is easy to check that the resulting SeLcomprehensions 
correspond to the traditional usage, and in what follows 
we will write { t 1 q } in preference to the more cumber- 
some [t 1 qlSet. 

The call-by-value interpretation for this language is 
provided by the rules in Figure 7, choosing h4 to be the 
monad Set, together with the rules: 

t Uu’ = t*uu* 
n* = in) 
t + u* = {x+yIx+-t*;y+-u*}. 

These rules translate a term of type T in the non- 
deterministic language into a term of type Set T in the 
pure functional language (which includes monad com- 
prehensions). For example, the term above translates 
to 

it lx +-{Pa -+ { 2’ + 9’ I 2’ - {a); Y’ + {a) 1) 1; 
Y + w u w 
2 -(xyH 

which has the value {2,4}, as expected. 
The call-by-name translation of the same language is 

provided by the rules in Figure 8. The rules for (2 U u), 
n, and (d + u) are the same as the call-by-value rules, 
replacing replacing (-)* with (-)t. Now the same term 
translates to 

{ y 1 x c { (Aa ---t { 2’ + y’ 1 x’ e a; y’ c a }) }; 

Y +- ~wPJwH 
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* 

;A 
= Ak+kx 

2 + v)* = AR + k (AZ -* 21’) 
(t u>* = Xk + t* (Xx ---f u* (Ay - 3: y k)) 
(u, VI’ = Ak 4 u* (Ax + v* (Ay + k(u, v))) 
(fst I)* = Xk --, t* (Xx 4 k (fsl2T)) 

Figure 9: Continuation-passing style 

which has the value {2,3,4}, as expected. 
A similar approach to non-deteminism is taken by 

Hughes and O’Donnell [H089]. They suggest adding 
a set type to a lazy functional language where a set 
is actually represented by a non-deterministic choice of 
one of the elements of the set. The primitive opera- 
tions they provide on sets are just map, unit, and join 
of the set monad, plus set union (U) to represent non- 
deterministic choice. They address the issue of how such 
sets should behave with respect to I, and present an el- 
egant derivation of a non-deterministic, parallel, tree 
search algorithm. However, they provide no argument 
tha.t any program in a traditional non-deterministic 
functional language can be encoded in their approach. 
Such an argument is provided by the translation scheme 
a ove. b 

8.2 Example: Continuations 

As a final example, consider the call-by-value interpre- 
tation under the monad of continuations, Cont, given 
in Section 7.3. Applying straightforward calculation 
to simplify the Cont-comprehensions yields the trans- 
lation scheme given in Figure 9, which is simply the 
continuation-passing style beloved by many theorists 
and compiler writers. It is left to the reader to perform 
a similar calculation on the other translation scheme 
to yield a call-by-value version of continuation-passing 
style (which is less well known, but can be found in 

P&41). 
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