
Comprehending Monads

Philip Wadler
University of Glasgow*

Abstract

Category theorists invented monads in the 1960’s to
concisely express certain aspects of universal algebra.
Functional programmers invented lisf comprehensions
in the 1970’s to concisely express certain programs in-
volving lists. This paper shows how list comprehensions
may be generalised to an arbitrary monad, and how the
resulting programming feature can concisely express in
a pure functional language some programs that manipu-
late state, handle exceptions, parse text, or invoke con-
tinuations. A new solution to the old problem of de-
structive array update is also presented. No knowledge
of category theory is assumed.

1 Introduction

Is there a way to combine the indulgences of impurity
with the benefits of purity?

Impure, strict functional languages such as Standard
ML [Mi184, HMT88] and Scheme [RC86] support a wide
variety of features, such as assigning to state, handling
exceptions, and invoking continuations. Pure, lazy func-
tional languages such as Haskell [HW90] or Miranda’
[Tur85] eschew such features, because they are incom-
patible with the advantages of lazy evaluation and equa-
tional reasoning, advantages that have been described
at length elsewhere [Hug89, BWSS].

Purity has its regrets, and all programmers in pure
functional languages will recall some moment when an
impure feature has tempted them. For instance, if a
counter is required to generate unique names, then an
assignable variabIe seems just the ticket. In such cases
it is always possible to mimic the required impure fea-

*Author’s address: Department of Computing Science, Uni-
versity of Glasgow, Gf2 SQQ, Scotland. Electronic mail:
wadler@cs.glasgow.ac.uk.

‘Miranda is a trademark of Research Software Limited.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

ture by straightforward though tedious means. For in-
stance, a counter can be simulated by modifying the rel-
evant functions to accept an additional parameter (the
counter’s current value) and return an additional result
(the counter’s updated value).

This paper describes a new method for structur-
ing pure programs that mimic impure features. This
method does not completely eliminate the tension be-
tween purity and impurity, but it does relax it a little
bit. It increases the readability of the resulting pro-
grams, and it eliminates the possibility of certain silly
errors that might otherwise arise (such as accidentally
passing the wrong value for the counter parameter).

The inspiration for this technique comes from the
work of Eugenio Moggi [Mog89a, Mog89b]. His goal was
to provide a way of structuring the semantic description
of features such as state, exceptions, and continuations.
His discovery was that the notion of a monad from cate-
gory theory suits this purpose. By defining an interpre-
tation of X-calculus in an arbitrary monad he provided
a framework that could describe all these features and
more.

It is relatively straightforward to adopt Moggi’s tech-
nique of structuring denotational specifications into a
technique for structuring functional programs. This
paper presents a simplified version of Moggi’s ideas,
framed in a way better suited to functional programmers
rather than semanticists; in particular, no knowledge of
category theory is assumed.

The paper contains two significant new contributions.

The first contribution is a new language feature, the
monad comprehension. These generalise the familiar nc+
tion of list comprehension [Wad87], due originally to
Burstall and Darlington, and found in KRC [Tur82],
hliranda, Haskell and other languages. Monad compre-
hensions are not essential to the structuring technique
described here, but they do provide a pleasant syntax
for expressing programs structured in this way.

The second contribution is a new solution to the old
problem of destructive array update. The solution con-
sists of two abstract data types with ten operations be-
tween them. The usual typing discipline (e.g., Hindley-
Milner extended with abstract data types) is sufficient
to guarantee that array update may safely be imple-

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To copy otherwise, or to republish, requires a fez and/or specific permission.

0 1990 ACM 089791-368-X/90/0006/0061 $1.50 61

http://crossmark.crossref.org/dialog/?doi=10.1145%2F91556.91592&domain=pdf&date_stamp=1990-05-01

mented by overwriting. To my knowledge, this solu-
tion has never been proposed before, and its existence
is quite a surprise considering the plethora of more elab-
orate solutions that have been proposed: these include
syntactic restrictions [Sch85], run-time checks [Hol83],
abstract interpretation [Hud86a, Hud86b, Blo89], and
exotic type systems [GH90, WadSO]. That monads led
to the discovery of this solution must be counted a point
in their favour.

Why has this solution not been discovered before?
One likely reason is that the data types involve higher-
order functions in an essential way. The usual ax-
iomatisation of arrays involves only first-order func-
tions (index, update, and newarray, as described in Sec-
tion 4.3), and so, apparently, it did not occur to anyone
to search for an abstract data type based on higher-
order functions. Incidentally, the higher-order nature of
the solution means that it cannot be applied in first-
order languages such as Prolog or OBJ. It also casts
doubt on Goguen’s thesis that first-order languages are
sufficient for most purposes [Gog88].

Monads and monad comprehensions help to clar-
ify to unify some previous proposals for incorporating
various features into functional languages: exceptions
tWad85, Spi89], p arsers [Wad85, Fai87, FL89], and non-
determinism [H089]. (Spivey’s work [Spi89] is notable
for pointing out, independently of Moggi, that monads
provide a framework for exception handling.)

There is a translation scheme from &calculus into
an arbitrary monad, indeed, there are two schemes,
one yielding call-by-value semantics and one yielding
call-by-name. These can be used to systematically
transform languages with state, exceptions, continua-
tions, or other features, into a pure functional language.
Two applications are given. One is to derive call-by-
value and call-by-name interpretations for a simple non-
deterministic language. The other is to apply the cail-
by-value scheme in the monad of continuations: the re-
sult is the familiar continuation-passing style transfor-
mation.

A key feature of the monad approach is the use of
types to indicate what parts of a program may have
what sorts of effects. In this, it is similar in spirit to
Gifford and Lucassen’s effect systems [GL88].

The examples in this paper are based on Haskell
[HW90], though any lazy functional language incorpo-
rating the Hindley/Milner type system would work as
well.

The remainder of this paper is organised as follows.
Section 2 uses list comprehensions to motivate the con-
cept of a monad, and introduces monad comprehen-
sions. Section 3 shows that variable binding (as in
“where” terms) and control of evaluation order can be
modelled by two trivial monads. Section 4 explores the

use of monads to structure programs that manipulate
state, and presents the new solution to the array up-
date problem. Two examples are considered: renam-
ing bound variables, and interpreting a simple imper-
ative language. Section 5 extends monad comprehen-
sions to include filters. Section 6 introduces the con-
cept of monad morphism and gives a simple proof of the
equivalence of two programs. Section 7 catalogues three
more monads: parsers, exceptions, and continuations.
Section 8 gives the translation schemes for interpreting
X-calculus in an arbitrary monad. Two examples are
considered: giving a semantics to a non-deterministic
language, and deriving continuation-passing style.

2 Comprehensions and monads

2.1 Lists

Let us write M 3: for the data type of lists with elements
of type 2. (In Haskell, MI is written IX].) For exam-
ple, [1,2,3] :: M Inl and [‘a’, ‘b’, ‘c’] :: M Char. We

write map for the higher-order function that applies a
function to each elment of a list:

map :: (x + y) -+ (M x * M y).

(In Haskell, type variables are written with small let-
ters, e.g., z and y, and type constructors are writ-
ten with capital letters, e.g., M.) For example, if
code : Char - Int maps a character to its ASCII code,
then map code [‘a’, ‘b’, ‘c’] = [97,98,99]; Observe that

w map id = id,
(ii) map(g .f) = mapg .mapf.

Here id is the identity function, id x = x, and g . f is
function composition, (g . f) x = g (f x).

In categorical terms, any operator M on types com-
bined with an operator map taking functions x - y
into functions M 2 + M y and satisfying (i) and (ii)
is called a functor. Categorists prefer to use the same
symbol for both the type operator and the function op-
erator, so would write M f where we write map f.

Two useful functions are one that converts a value
into a singleton list and one that concatenates a list of
lists into a list:

unit :: x ---) M x,
join :: M (M x) -+ M x.

For example, unit 3 = [3] and join [[l, 21, [3]] = [l, 2,3].
Observe that

(iii)

(iv>

map f unit = unit . f,
mapf .join = join. map (mapf).

62

Indeed, laws (iii) and (iv) follow immediately from the
types of unit and join; see [Rey83, Wad891 for an ex-
planation.

In categorical terms, unit and join are natural trans-
formations. Rather than treating unit as a single func-
tion with a polymorphic type, categorists treat it as
a family of functions, unit, :: 3: + M 2 satisfying
mapf f unit, = unit,, . f for every f :: x + y, where
x and y are any types; and they treat join similarly.
Natural transformation is a simpler concept than poly-
morphic type, but this paper will stick with polymor-
phic types since they are more familiar (to functional
programmers).

2.2 Comprehensions

Many functional languages provide a form of list com-

prehension analogous to set comprehension. For exam-
ple,

KGY> Ix + [I,212 +- [3,411
= [(I,3),(1,4), (2,3), (2,4)1.

In general, a comprehension has the form [t] q 3, where
t is a term and q is a qualifier. We will use the letters
t, ‘11, ZI to range over terms, and p, Q, T to range over
qualifiers. A qualifier is either empty, A; or a generator,
x + u, where 3: is a variable and u is a list-valued term;
or a composition of qualifiers, (p; q). Comprehensions
are defined by the following rules:

ii;
[t JA] = unit2

[tlx+-u] = map (Xx -+ 2) u

(3) It I (pi 411 = ioin[Itld I PI

(In Haskell, X-terms are written (Xx 4 t) rather than
the more common (AZ. t).) Note the reversal of qual-
ifiers in rule (3): nesting q inside p on the right-hand
side means that, as we expect, variables bound in p may
be used in q.

For those familiar with list comprehensions, the
empty qualifier and the parentheses around qualifier
compositions will appear strange. This is because they
are not needed; qualifier composition is associative and
has the empty qualifier as a unit. This will be proved
shortly. Indeed, the only reason for here for including
parentheses is to facilitate the proof that they are not
required!

Most languages that include list comprehensions also
allow another form of qualifier, known as a filter. Filters
will be ignored for the time being, but returned to in
Section 5.

(A footnote for categorists: Using A-terms means that
we are working within a Cartesian closed category. Thus,
for each pair of objects (types) x and y in the category,
there is an object (type) x 3 y representing the arrows

from x to y. Since M (or, in out notation, map) may
appear in the body of a X-term, it must itself correspond
to an arrow of the category, M : (z 3 y) -+ (M 2: *
M y). Such an M is called a strong functor.)

As a simple example, we have:

h-3: I x c- [I,2,31]
= {by (2))

map (Ax - sqr x) [l, 2,3]
= [;ei;ing map)

, ,

The comprehension in the initial example is computed
as.

[(X,Y) I x + [I,2l;y +-[3,411
= {by (3))

join[[(x,y) I Y+--[3,411 12 +-Ill211
= Iby (‘41

join [map (AY - C.2, Y>> [3,41 I x +- PI 211

‘, Y>> [3,41) PA>

117 21)

= iby (2))
join (map (Xx -+ map (Xy ----) (x

= {reducing map}

join(map (Xx - [(x,3),(x,4)1)
= {reducing map}

join[[(1,3),(1,4)l,[f2,3),(2,4)1 I
= {reducing join}

[(1,3),(1,4>,(2,3),(2,4)1

A useful property satisfied by list comprehensions is

(4) [ft I41 = mapf[t 191,

for all functions f, terms t, and qualifiers q, so long as
f contains no free variables bound by q. For example,

[w+ + Y) I 2: + P,% Y +- [3,4]] = map sqr[x + y I
x e [1,2]; y c [3,4]]. The proof is by induction on the
structure of qualifiers, and uses laws (ii)-(h). We also
have that

(5) [XIX+--u] = ‘11.

which follows from law (i).

2.3 Monads

Parentheses in qualifiers are not required, because qual-
ifier composition is associative and has the empty qual-
ifier as a unit:

(I’) [flkql = PM,
(II’) [tl !z;Al = [tld1
(III’) [t I (p; q); rl = ii I p;(q;r)l.

63

For example, the left-hand side of rule (II’) simplifies
to

[t I GA1
= {by (3))

join [It I4 I 41
= {by (1))

join[unit t 1 q]

= {by (4))
join (map unit [t 1 q])

Taking [2] q] to be [z I z + u] and applying (5), it
follows that (II’) is equivalent to join . map unit = id.
Using a similar procedure for the other two rules, we
have that (I’)-(III’) are equivalent, respectively, to

(1) join . unit = id,

(II) join. map unit = id,

(IW join . join = join . map join.

Laws (I)-(III) d o indeed hold for lists. For example:

join (un;i[1,2]) = join [[1,2]] = [1,2],
join (map unit [1,2]) = join [[l], [2]] = [l, 21,

join (join [[PI, PII, [[3111> = join [PI, PI, [311 = FL 2,31,
@n(mapjoin [[[11,[211, [13111> = join [P,21,[311 = [1,%31-
Hence, it is sensible to omit parentheses around quali-
fiers in list comprehensions. For instance, [t] p; q; T-]
stands for either side ofequation (111’). It is safe to drop
empty qualifiers, so the only remaining comprehension
containing an empty qualifier is [t] A], which we will
abbreviate as [t 1.

Obviously, the comprehension notation is sensible for
any operator M on types together with functions map,
uni2, and join of the appropriate types satisfying laws
(i)-(iv) and (I)-(III). Such a triple (map, unit, join)
is called a monad by category theorists [Mac71, LS86].
(Less imaginatively, it has also been called a “triple”
[BW85].)

In the following, we will often write the type M alone
tostand for the monad (map, unit, join) where the func-
tions can be understood from context. In particular, we
will write List to stand for the monad of lists as de-
scribed above. We will also write [t 1 qlM to indicate
in which monad a comprehension is to be interpreted.

There is exactly one clause in the definition of com-
prehension for each component of a monad: rule (1)
corresponds to unit, rule (2) to map, and rule (3) to
join. Further, unit, map, and join can be expressed in
terms of M-comprehensions:

unit x = [x]M
mapfT = [fx 1 x +-TIM
join F = [x (5-F; x +-TIM.

Here and in what follows, we adopt the convention that
if x has type x, then F has type M x and 5 has type
M (M x).

(Moggi’s work assumes not only a monad, but a
“strong monad” with some additional structure. As al-
ready noted, M is a strong functor, and it follows from
this that all the monads we consider are strong mon-
ads. :In particular the tensorial strength, t :: (t, M y) -+
M (z, y), is defined by t XT = [(z, y) I y e T’]~.)

We conclude with one final law of comprehensions,
the comprehension substitution law. Let t, u be terms,
p, q, T be qualifiers, and x a variable. Then

(6) It I P; x - 14nl”; TIM = [C I P; 4; CY

where 1,” and r,” are t and r with each instance of x
replaced by u. This law follows from laws (l)-(4). Al-
ternatively, if we take laws (5) and (6) as given, and de-
fine unit, map, and join in terms of M-comprehensions
as shown above, then laws (;)-(iv), (l)-(4), and (I)-
(III) all follow. Thus, one may choose whether to take
monads as primitive (axiomatised by laws (i)-(h) and
(I)-(III)) and d e fi ne comprehensions in terms of mon-
ads, or to take comprehensions as primitive (axioma-
tised by laws (5) and (6)) and define monads in terms
of comprehensions.

Monads were conceived in the 1960’s, list comprehen-
sions in the 1970’s. They have quite independent ori-
gins, but fit with each other remarkably well. As often
happens, a common truth may underlie apparently dis-
parate phenomena, and it may take a decade or more
before this underlying commonality is unearthed.

3 Two trivial monads

3.1 The identity monad

The identity monad is the trivial monad specified by

type Id x = x
maprdfx = fx
unitId 2 = x
joinIdx = x,

so mapId, unitId, and bindid are all just the identity
function. A comprehension in the identity monad is
like a “where” term:

[t 1 x + u]Id
= ((Ax + 2) u)
= (2 where z = u).

Similarly, a sequence of qualifiers corresponds to a se-
quence of nested “where” terms:

[t 1 x t u; y + w]Id
= ((t where y = V) where x = u).

Since y is bound after x it appears in the inner “where”
term. In the following, comprehensions in the identity

64

monad will be written in preference to “where” terms,
as the two are equivalent.

(In the Hindley-Milner type system, X-terms and
“where” terms differ in that the latter may introduce
polymorphism. The key factor allowing “where” terms
to play this role is that the syntax pairs each bound
variable with its binding term. Since monad compre-
hensions have a similar property, it seems reasonable
that they, too, could be used to introduce polymor-
phism. However, the following does not require com-
prehensions that introduce polymorphism, so we leave
exploration of this issue for the future.)

3.2 The strictness monad

Sometimes it is necessary to control order of evaluation
in a lazy functional program. This is usually achieved
with the computable function strict, defined by

strict f x = if 3: # I then f 3: else 1.

Operationally, slrictf I is reduced by first reducing z
to weak head normal form (WHNF) and then reducing
the application f 2. Alternatively, it is safe to reduce
3: and f z in parallel, but not allow access to the result
until 2 is in WHNF.

We can use this function as the basis of a monad:

type Str x = x
mapSt’f 2 = strict f 2
uldst x = x
joinSt’ x = 2.

This is identical to the identity monad, except for the
definition of map . Str It is easy to verify that this does
indeed satisfy the monad laws, (i)-(iv) and (Q-(111).

The corresponding monad comprehension provides a
simple way to control the evaluation order of lazy pro-
grams, which we will make use of later. For instance,
the operational interpretation of

[t 1 x c- u; y + v ytr

is as follows: reduce u to WHNF, bind x to the value
of u, reduce v to WHNF, bind y to value of v, then
reduce 1. Alternatively, it is safe to reduce 1, U, and v
in parallel, but not allow access to the result until both
u and 2~ are in WHNF.

4 Manipulating state

Procedural programming languages operate by assign-
ing to a state; this is also possible in impure functional
languages such as Standard ML. In pure functional lan-
guages, assignment may be simulated by passing around

a value representing the current state. This section
shows how the monad of state transformers and the
corresponding comprehension can be used to structure
programs written in this style.

4.1 State transformers

Fix a type S of states. The monad of state transformers
ST is defined by

type STx = S- (x,S)
mapSTfZ = As * [(fx,s’) 1 (x,s’) tZsyd
anit”Tx = As 4 (x,s)
joinST F = As + [(x,27”) 1 (T,s’) +-zs;

(2, s”) + Fs’]‘d.

(Recall the equivalence of Id-comprehensions and
“where” terms as explained in Section 3.1.) A state
transformer of type x takes a state and returns a value
(of type z) and a (new) state. The unit takes the value
I into the state transformer Xs --i (x,s) that returns x
and leaves the state unchanged. It follows from these
definitions that

[(X,Y) Ix *f; Y +-TIST
= As 4 [((2, y), s”) 1 (2, s’) + 37s;

(y, s”) + Ts’]Id.

This applies the state transformer F to the state s, yield-
ing the value z and the new state s’; it then applies a
second transformer 7 to the state s’ yielding the value
y and the newer state s”; it finally returns a value con-
sisting of x paired with y and the final state s”.

Two useful operations in this monad are

fetch :: STS
fetch = As + (s,s)

assign :: S 4 ST ()
assign s’ = As --+ (0, s’).

The first of these fetches the current value of the state
(leaving the state unchanged); the second discards the
old state, assigning the new state to be the given value.
Here () is the type that contains only the value 0.

A third useful operation is

init :: S+STxdx
init s F = [x 1 (x,5’) tfs]‘d.

This applies the state transformer Z to a given initial
state s; it returns the value computed by the state trans-
former while discarding the final state.

4.2 Example: Renaming

Say we wish to rename all bound variables in a lambda
term. A suitable data type Term for representing

65

lambda terms is defined in Figure 1 (in Standard ML)
and Figure 2 (in Haskell). New names are to be gener-
ated by counting; we assume there is a function

mkname :: Int + Name

that given an integer computes a name. We also assume
a function

&St :: Name -+ Name -+ Term + Term

such that subst x’ x t substitutes x’ for each occurrence
of z in t.

A soIution to this problem in an impure functional
language is shown in Figure 1. This uses a reference N
to an assignable storage location containing an integer,
the current state. The “functions” and their types are:

neumame :: () + Name,
renamer :: Term --, Term,
rename :: Term + Term.

Note that newname and renamer are not true functions
as they depend on the state. In particular, newname ()
returns a different name each time it is called, and hence
requires a dummy parameter, 0. However, rename is a
true function (it always generates new names starting
from 0). Understanding the program requires a knowl-
edge of which “functions” affect the state and which do
not. This is not always easy to see - renamer is not a
true function, even though it does not contain any di-
rect reference to the state N, because it does contain
an indirect reference through newname; but rename is
a true function, even though it references renamer.

An equivalent solution in a pure functional language
is shown in Figure 2. This explicitly passes around an
integer that is used to generate new names. The func-
tions and their types are:

newname :: Int + (Name, Int),
renamer :: Term -+ Int --t (Term, Id),
rename :: Term 4 Term.

The function newname generates a new name from the
integer and returns an incremented integer; the func-
tion renamer takes a term and an integer and returns
a renamed term (with names generated from the given
integer) paired with the final integer generated. The
function rename takes a term and returns a renamed
term (with names generated from 0). This program is
straightforward, but can be difficult to read because it
contains a great deal of “plumbing” to pass around the
state. It is relatively easy to introduce errors into such
programs, by writing n where n’ is intended or the like.
This “plumbing problem” can be more severe in a pro-
gram of greater complexity.

Finally, a solution of this problem using the monad
of state transformers is shown in Figure 3. The state
is taken as S = Int. The functions and their types are
now:

newname :: ST Name,
renamer :: Term 4 ST Name,
rename :: Term + Term.

The monadic program is simply a different way of writ-
ing the pure program. Types in the monadic program
can be seen to correspond directly to the types in the im-
pure program: an impure “function” of type x + y that
affects the state corresponds to a pure function of type
x + ST y. Thus, renamer has type Term + Term in
the impure program, and type Term ---f ST Term in the
monadic program; and newname has type () -+ Name
in the impure program, and type ST Name, which is
isomorphic to () + ST Name, in the pure program.
Unlike the impure program, types in the monadic pro-
gram make it manifest where the state is affected (and
so do the ST-comprehensions).

The “plumbing” is now handled implicitly by the
state transformer rather than explicitly. Various kinds
of errors that are possible in the pure program (such
as accidentally writing n in place of n’) are impossi-
ble in the monadic program. Further, the type sys-
tem ensures that plumbing is handled in an appropriate
way. For example, one might be tempted to write, say,
App (renamer 2) (renamer u) for the right-hand side of
the last equation defining renamer, but this would be
detected as a type error.

Safety can be further ensured by making ST into an
abstract data type on which mapST, unitST, joinST,
fetch, assz’gn, and init are the only operations. This
guarantees that one cannot mix the state transformer
abstraction with other functions which handle the state
inappropriately. This idea will be pursued in the next
section.

Impure functional languages (such as Standard ML)
are restricted to using a strict (or call-by-value) order
of evaluation, because otherwise the effect of the assign-
ments becomes very difficult to predict. Programs using
the monad of state transformers can be written in lan-
guages using either a strict (call-by-value) or lazy (call-
by-name) order of evaluation. The state-transformer
comprehensions make clear exactly the order in which
the assignments take effect, regardless of the order of
evaluation used.

Reasoning about programs in impure functional lan-
guages is problematic (although not impossible - see
[MT891 for one approach). In contrast, programs writ-
ten using monads, like all pure programs, can be rea-
soned about in the usual way, substituting equals for
equals. They also satisfy additional laws, such as the

66

datatype Term = Var of Name 1 Lam of Name * Term 1 App of Term * Term;
fun rename t = let

val N = ref0;

fun newname () = let n = !N; () = (N := n + 1) in mkname n;

fun renamer (Var x) = Varx

I renamer(Lam (x,1)) = let x’ = newname () in
Lam (x’, subst I’ x (renamer t))

1 renamer(App (t, u)) = App(renamert, renameru)
in

renamer t;

Figure 1: Renaming in impure functional language (Standard ML)

data Term =

newname ::
newname n =

renamer
renamer (Var z) n =
renamer (Lam x t) n =

renamer(App t u) n =

rename
rename t

::
=

Var Name 1 Lam Name Term) App Term Term

lnt + (Name, Int)
(mkname n, n + 1)

Term -+ Int ---i (Term, Int)
(VUT z, n)
(Lam x’ (su bst x’ x t’) , n”) where

(x’, n’) = newname n
(t’, n”) = renamer t n’

(App t’u’, n”) where
(t’, n’) = renamer t n

(u’, 72”) = renamer u n’

Term -+ Term
1’ where (t’, n’) = renamer t 0

Figure 2: Renaming in pure functional language (Haskeil)

data Term = VarName 1 Lum Name Temn 1 App Term Temz

newname ‘. ST Name
newname = [mkname n 1 n + fetch; () + assign (n + l)lST

renamer .. Term + ST Term
renamer (Vur x) = [Vurx]l”T
renamer (Lam x t) = [Lam x’ (subs2 I’ x 1’)) 1 I’ c newname; 2’ + renamer t JST
renamer(App t u) = [App 1’ u’ I 1’ + renamert; u’ t renumerulST

rename :: Term -+ Term
rename t = init 0 (renumer t)

Figure 3: Renaming with the monad of state transformers

67

following laws on qualifiers:

2 c fetch; y c fetch = 2 4- fetch; y c [xlST,
() c assign x; y t fetch = () 4- assign x; y t [xlST,

() + assign x; () + assign y = () + assign y,

and on terms:

initx[p- = t,
initx[t 1 qlST = init 2 [t 1 () e assign 2; Q]~*,

initx[t 1 q; () t- assigny] = initx[t 1 q].

These, combined with the monad laws (l)-(6), allow
one to use equational reasoning to prove properties of
programs that manipulate state.

4.3 Array update

Let ATT- be the type of arrays taking indexes of type 1x
and yielding values of type Val. The key operations on
this type are

newarray :: Val --t Arr,
index :: Ix -+ Arr-+ Val,
update :: Ix + Vu1 + Arr + Arr.

Here newarray 21 returns an array with all entries set to
v; and index i a returns the value at index i in array a;
and update i v a returns an array where index i has value
v and the remainder is identical to a. In equations,

index i(newwmyv) = v,
index i (update i v a) = v,
index i (update i’ v a) = index i a, if i # i'.

The efficient way to implement the update operation is
to overwrite the specified entry of the array, but in a
pure functional language this is only safe if there are
no other pointers to the array extant when the update
operation is performed.

Now consider the monad of state transformers taking
the state type S = Arr, so that

type ST x = Arr + (x, Arr).

Variants of the fetch and assign operations can be de-
fined to act on an array entry specified by a given index,
and a variant of inil can be defined to initialise all en-
tries in an array to a given value:

fetch :: Ix ---t ST Val
fetch i = Au -+ [(v, a)] v + index i alst’

assign :: Ix --, Val 4 ST()
assign i v = Aa - (0, update i v a)

init :: Vu1 + ST x -+ x
init VZ = [2 1 (x, a) t ?(newarray v)]Id.

A Str-comprehension is used in fetch to force the entry
from a to be fetched before a is made available for fur-
ther access; this is essential in order for it to be safe to
update a by overwriting.

Now, say we make ST into an abstract data type
such that the only operations on values of type ST are
maps*, units=, joins=, fetch, assign, and init. It is
straightforward to show that each of these operations,
when passed the sole pointer to an array, returns as its
second component the sole pointer to an array. Since
these are the only operations that may be used to build a
term of type ST, this guarantees that it is safe to imple-
ment the assign operation by overwriting the specified
array entry.

The key idea here is the use of the abstract data
type. Monad comprehensions are not essential for this
to work, they merely provide a desirable syntax.

4.4 Example: Interpreter

Consider building an interpreter for a simple imperative
language. The store of this imperative language will be
modelled by a state of type Arr, so we will take Ix to
be the type of variable names, and Val to be the type of
values stored in variables, The abstract syntax for this
language is represented by the data types shown in Fig-
ure 4. The language consists of expressions, commands,
and programs:

data Exp = Var 13: I Const Val 1 Plus Exp Exp
data Corn = Asgn Ix Exp I Seq Corn Corn

1 If Exp Corn Corn
data Prog = Prog Corn Exp.

An expression is a variable, a constant, or the sum of two
expressions; a command is an assignment, a sequence of
two commands, or a conditional; and a program consists
of a command followed by an expression.

A version of the interpreter in a pure functional lan-
guage is shown in Figure 4. The interpreter can be read
as a denotational semantics for the language, with three
semantic functions:

exp :: Exp + Arr + Val,
corn :: Corn + Arr --+ Arr,

Prog :: Prog 4 Val.

The semantics of an expression takes a store into a value;
the semantics of a command takes a store into a store;
and the semantics of a program is a value. A program
consists of a command followed by an expression; its
value is determined by applying the command to an ini-
tial store where all variables have the value 0, and then
evaluating the expression in the context of the resulting
store.

68

exp
exp (Var i) a
exp (Cod v) a
exp (Plus el ez) a

corn
corn (Asgn i e) a
corn (Seq cl 02) a
corn (If e cl c2) a

P w
prog (Prog c e)

. . . .
=
=
=

. . . .
=
=
=

::
=

Exp + Arr + Val
lookup i a
V

exp el a -t- exp e2 a

Com+Arr+Arr
update i (exp e a) a
corn c-2 (corn cl a)
if exp e a = 0 then corn cl a else corn c2 a

Prog + Val
exp e (corn c (newarray 0))

Figure 4: Interpreter in a pure functional language

9
exp (VW i)
exp (Const v)
exp (Plus el e2)

corn
corn (Asgn i e)
corn (Seq cl cz)
corn (If e cl ~2)

P w
prog (Prog c e)

. . .
=
=
=

::
=
=
=

. . . .
=

Exp 4 ST Val
[v 1 v c fetch ilsT

blST
[81 + ~2 I ~1 - exp el; 9~2 t exp e21ST

Corn ----) ST ()
[()I~cexpee;()cassigniv]~~

[() 1 () +-- corn cl; (> + corn c21ST
to I v - exp e; 0 t if v = 0 then corn cl else corn c21ST

Prog --, Val
init 0 [21 1 () t corn c; v + exp elsT

Figure 5: Interpreter with state transformers

exp
exp (Var i)
exp (Const v)
exp (Plus el ez)

corn
corn (Asgn i e)
corn (Seq cl cg)
corn (If e cl ~2)

PT
prog (Prog c e)

:: Exp + SR Val
= [v) v +fetch ilSR
= [v]ST
= [211 + v2 1 211 6 exp el; v2 t exp e2 lSR

*- Corn + ST ()

ii MI v c TO (exp e); () - assign i vlST
= [() 1 () + corn cl; () + corn c21sT
= [()Iv-T-o(expe);()tifv=Othencomclelsecomcz]ST

:: Prog + Val
= indO[v I() i- corn c; v t ro(exp e)lST

Figure 6: Interpreter with state transformers and readers

69

The interpreter uses the array operations newarray,
index, and update. As it happens, it is safe to perform
the updates in place for this program, but to discover
this requires using one of the special analysis techniques
cited in the introduction.

The same interpreter has been rewritten in Figure 5
using state transformers. The semantic functions now
have the types:

exp :: Exp -+ ST Val,
corn :: Com + ST 0,

PW :: Frog -* Val.

The semantics of an expression depends on the state and
returns a value; the semantics of a command transforms
the state only; the semantics of a program, as before,
is just a value. According to the types, the semantics
of an expression might alter the state, although in fact
expressions depend the state but do not change it - we
will return to this problem shortly.

The abstract data type for ST guarantees that it is
safe to perform updates (indicated by assign) in place
- no special analysis technique is required. It is easy
to see how the monad interpreter can be derived from
the original, and (using the definitions given earlier) the
proof of their equivalence is straightforward.

The program written using state transformers has a
simple imperative reading. For instance, the line

corn (Seq cl 122) = [(> 1 () + corn cl; () + corn Cal”*

can be read “to evaluate the command Seq cl ~2, first
evaluate cl and then evaluate ~2”. The types and the
use of the ST comprehension make clear that these op-
era.tions transform the state; further, that the values
ret.nrned are of type () makes it clear that only the ef-
fect on the state is of interest here.

One drawback of this program is that it introduces
too much sequencing. The line

exp (Plus el e2)
= [vl + v2 1 211 +- exp el ; v-2 - exp e2] ST

can be read “to evaluate Plus ei es, first evaluate ei
yielding the value ~1, then evaluate e2 yielding the value
712, then add vi and us”. This is unfortunate: it imposes
a spurious ordering on the evaluation of ei and es (the
original program implies no such ordering). The order
does not matter because although exp depends on the
state, it does not change it. But, as already noted, there
is no way to express this using just the monad of state
transformers. To remedy this we will introduce a second
monad, that of state readers.

4.5 State readers

Recall that the monad of state transformers, for a fixed
type S of states, is given by

typeSTx = S+(x,S)

The monad of state readers, for the same type S of
states, is given by

type SRx = S-+(x,S)
mapsRf 2 = As ---L [fx 1 E + zsyd
uniiSR x = As--+x
joinSR$ = As + [x 1 E + 2s; x +- 3slrd.

Here 2 is a variable of type SR z, just as ?i? is a variable
of type ST x. A state reader of type x takes a state and
returns a value (of type x), but no new state. The unit
takes the value x into the state transformer Xs + x that
ignores the state and returns z. It follows from these
definitions that

[(X,Y> Ix +T Y GISR
= As - [(X,Y> I 2 +-- 2s; y + 5syd

This applies the state readers 2 and ji to the state s,
yielding the values x and y, which are returned in a
pair.

It is easy to see for this monad that

[(X,Y) Ix +--p; Y +YISR
= [(x,y)Iy4j;x+qSR,

so that the order in which 2 and 3 are computed is
irrelevant. A monad with this property is called com-

m&alive, since it follows from this that

It I P; qlSR = [t 19; PFR

for any term t, and any qualifiers p and q such that p
binds no free variables of q and vice-versa. Thus state
readers capture the notion of order independence that
we desire for expression evaluation in the interpreter
example.

Two useful operations in this monad are

fetch :: SR S
fetch = As ---) s

l-0 :: SRx -rSTx
TOI? = As + [(x,s) 1 x t 3s]‘d.

The first is the equivalent of the previous fetch, but now
expressed as a state reader rather than a state trans-
former. The second converts a state reader into the
corresponding state transformer: one that returns the
same value as the state reader, and leaves the state un-
changed. (The name TO abbreviates “read only” .>

70

In the specific case where S is the array type Arr, we
define

fetch :: Ix-+SRVal
fetch i = Xa + index i a.

In order to guarantee the safety of update by over-
writing, it is necessary to modify two of the other
definitions to use Sir-comprehensions rather than Id-
comprehensions:

mapSRfZ = Xa 4 [f x 1 x c F alStr
7-03 = Aa -+ [(x,a) Ix +Zu]str

These correspond to the use of an Str-comprehension in
the ST version of fetch.

Thus, for arrays, the complete collection of operations
on state transformers and state readers consists of

fetch :: Ix+SRVal,
assign :: Ix ---) Vu1 ---) ST 0,
l-0 :: SRx ---) STx,
init :: Val--) STx J x,

together with mapSR, unitSR, joinsR and mapST,
unitST, joinST. These ten operations should be de-
fined together and constitute all the ways of manip-
ulating the two mutually defined abstract data types
SR x and ST x. It is straightforward to show that each
operation of type SR, when passed an array, returns
a value that contains no pointer to that array once it
has been reduced to weak head normal form (WHNF);
and that each operations of type ST, when passed the
sole pointer to an array, returns as its second compo-
nent the sole pointer to an array. Since these are the
only operations that may be used to build values of
types SR and ST, this guarantees that it is safe to im-
plement the assign operation by overwriting the speci-
fied array entry. (The reader may check that the Str-
comprehensions in mapSR and ro are essential to guar-
antee this property.)

Returning to the interpreter example, we get the new
version shown in Figure 6. The only difference from the
previous version is that some occurrences of ST have
changed to SR and that ro has been inserted in a few
places. The new typing

exp :: Exp -+ SR Val

makes it clear that exp depends on the state but does
not alter it. A proof that the programs in Figures 5
and 6 are equivalent is given in Section 6.

The excessive sequencing of the previous version has
been eliminated. The line

exp (Plus el ez)
= [2rl + v2 1 vl + expel; 2.9 + exp:p21sR

can now be read “to evaluate Plus ei e2, evaluate ei
yielding the value ~1 and evaluate e2 yielding the value
~2, then add vi and vz”. The order of qualifiers in an
SR-comprehension is irrelevant, and so it is perfectly
permissible to evaluate el and e2 in any order, or even
concurrently.

The interpreter derived here is similar in structure
to one in [WadSO], which uses a type system based on
linear logic to guarantee safe destructive update of ar-
rays. (A similar type system is discussed in [GH90].)
However, the linear type system uses a “let!” construct
that suffers from some unnatural restrictions: it requires
hyperstrict evaluation, and it prohibits certain types in-
volving functions. By contrast, the monad approach re-
quires only strict evaluation, and it places no restriction
on the types. This suggests that a careful study of the
monad approach may lead to an improved understand-
ing of linear types and the “let!” construct.

5 Filters

So far, we have ignored another form of qualifier found
in list comprehensions, the filter. For list comprehen-
sions, we can define filters by

[f 1 b] = if b then [Z] else [],

where b is a boolean-valued term. For example,

[z 1 x +- [1,2,3]; oddx]
= join[(x 1 oddx] 1 x t [1,2,3]]
= join[[l 1 oddl],[2 1 odd2],[3 1 odd311

1 ;;i;; PI! [I! PI1
t .

Can we define filters in general for comprehensions in an
arbitrary monad M? The answer is yes, if we can define
[] for M. Not all monads admit a useful definition of [I,
but many do.

Recall that M-comprehensions of the form [t] are de-
fined in terms of the qualifier A, by taking [11 = [t 1 A],
and that A is a unit for qualifier composition,

Similarly, we will define M-comprehensions of the form
[] in terms of a new qualifier, 0, by taking [] = [2] 01,
and we will require that 0 is a zero for qualifier compo-
sition,

PI& d = P I01 = [i IQ; 01.
Unlike with [i]A], the value of [tl0] is independent of t!

To define A we introduced a function unit :: x + M x
satisfying the laws

(iii) mapf 1 unit = unit,

(0 join . unit = id,

(III) join . map unit = id,

71

and then taking [t 1 A] = unit t. Similarly, to define 0
we introduce a function

zero:: y-+Mx,

satisfying the laws

(u) mapf . zero = zero .g,

g'

join . zero = zero,
join . map zero = zero.

Law (v) specifies that the result of zero is independent
of its argument; it follows immediately from the type
of zero (again, see [Ftey83, Wad891 for the reason). In
the case of lists, setting zero y = [] makes the last two
laws hold, because join [] = [J and join [[I,. . . , []] = [].
(This ignores what happens when zero is applied to I,
which will be considered below.)

In general, if any monad (map, unit, join) also pos-
sesses a zero satisfying the three laws above, then we
can define [] in this monad by taking [] = zero t for
a.ny 2. Moreover, we can extend comprehensions in this
monad to contain a new form of qualifier, the filter, de-
fined by

(7) [t 1 b] = if b then unit t else zero t,

where b is any boolean-valued term. For this extended
definition of qualifiers, we can show that laws (4) and
(6) still hold. We also have the new laws

(8) [t I b; cl = Et I(bAc)l,
(9) Plq;bl = Plb;ql,

where b and c are boolean-valued terms, and where q
is any qualifier not binding variables used in 6.

When dealing with I as a potential value, more care
is required. In a strict language, where all functions
(including zero) are strict, there is no problem. But in
a lazy language, in the case of lists, laws (v) and (IV)
hold, but law (V) is an inequality, join.map zero E zero,
since join (map zero) I = L but zeroi = []. In this
case, laws (l)-(8) are still valid, but law (9) holds only
if [1 I q] # 1. In the case that [2 I q] = I, law (9)
becomes an inequality, [t 1 q; b] & [t I b; q].

As a second example of a monad with a zero, consider
the strictness monad Str defined in Section 3.2. For this
monad, a zero may be defined by zeroSt’ y = 1. It is
easy to verify that the required laws hold; unlike with
lists, the laws hold even when zero is applied to 1. For
example, [1: - 1 1 2: 2 1 jStr returns one less than 2 if 1:
is positive, and I otherwise.

6 Monad morphisms

If M and N are two monads, then h :: M x ---t N x
is a monad morphism from M to N if it preserves the

monad operations:

h.map”f
h . unitM
h - joinM

where h2 = h-mapM h =

= map*f .h,
z unit*,
= join* . h’,

map * h. h (the two composites
_ .

are equal by the first equation).
Define the effect of a monad morphism on qualifiers

as follows:

h(A) = A,
h(x c u) = 2 + (h 4,
h(p; q) = (W; (h 9).

It follows that if h is a monad morphism from M to N
then

(*I W I #” = [t I&A*
for all terms i and qualifiers q. The proof is a simple
induction on the form of qualifiers.

As an example, it is easy to check that unitM ::
x + M x is a monad morphism from Id to M. It follows
that

[[t 1 x + u]yM = [tlx+[u]“]M.

This explains a trick occasionally used by functional
programmers, where one writes the qualifier z +- [U]
inside a list comprehension to bind x to the value of U,
that is, to achieve the same effect as the qualifier x + u
in an Id comprehension.

As a second example, the function ro from Section 4.5
is a monad morphism from SR to ST. This can be
used to prove the equivalence of the two interpreters
in Figures 5 and 6. Write expsT :: Ezp -+ ST Val
and expSR :: Exp + SR Val for the versions in the two
figures. The equivalence of the two versions is clear if
we can show that

ro . exp SR I ezpST.

The proof is a simple induction on the structure of ex-
pressions. In the case that the expression has the form
(Plus el e2), we have that

ro (expSR (Plus el ez))
= {unfolding expsR}

ro[u~+vzIu~+exp”~ el; 212 + expsR e2 lsR

= PY (*)I
[v1 + v2 1 v1 + ro (expsR el); vz t ro (expSR e2)lsT

= {hypothesis}
[VI + 212 1 VI + expsT el; ~2 4- expST e21ST

= {folding expST)
expST (Plus el ez).

The other two cases are equally simple.
All of this extends straightforwardly to monads with

zero. In this case we also require that h .zeroM = N zero ,
define the action of a morphism on a filter by h b = b,
and observe that (*) holds even when q contains filters.

72

7 More monads

This section describes three more monads: parsers, ex-
pressions, and continuations. The basic techniques are
not new (parsers are discussed in [Wad85, Fai87, FL89],
and exceptions are discussed in [Wad85, Spi89]), but
monads and monad comprehensions provide a conve-
nient framework for their expression.

7.1 Parsers

The monad of parsers is given by

type Parse x = String --* List (x, String)

map
Parse F f = Xi --+ [(f x,i’) 1 (x,i’) +FilList

unitParse x = Xi + [(2, i)lLiSt
join Parse ~ = Xi--k [(x,i”) 1 (T,i’)t?j;

(2, j”) c f j’ IList.

Here String is the type of lists of Char. Thus, a parser
accepts an input string and returns a list of pairs. The
list contains one pair for each succesful parse, consisting
of the value parsed and the remaining unparsed input.
An empty list denotes a failure to parse the input. It
follows from these definitions that

[(t,y) Ix +-F; y +T]Parse
= Xi + [((x, y), i”) [(2, i’) + Zi;

(y, i”) + 7Jj’lList.

This applies the first parser to the input, binds x to
the value parsed, then applies the second parser to the
remaining input, binds y to the value parsed, then re-
turns the pair (x, y) as the value together with input
yet to be parsed. If either i? or 7 fails to parse its input
(returning an empty list) then the combined parser will
fail as well.

There is also a suitable zero for this monad, given by

zeroParse y = Ai 4 pt.

Thus, [IParse is the parser that always fails to parse
the input. It follows that we may use filters in Parse-
comprehensions as well as in List-comprehensions.

The alternation operator combines two parsers:

(II) :: Parse x ---f Parse x * Parse x
T[?j = Ai + (Zi) -it (7;).

(Here +I- is the operator that concatenates two lists.) It
returns all parses found by the first argument followed
by all parses found by the second.

The simplest parser is one that parses a single char-
acter:

next :: Parse Char
next = Xi -+ [(head i, tail i) 1 not (null i) IList.

Here we have a List-comprehension with a filter. The
parser next succeeds only if the input is non-empty, in
which case it returns the next character. Using this, we
may define a parser to recognise a literal:

lit :: Char + Purse ()
lit c = [() 1 c’ + next; c = c’]parse.

Now we have a Purse-comprehension with a filter. The
parser iii c succeeds only if the next character in the
input is c.

As an example, a parser for fully parenthesised
lambda terms, yielding values of the type Term de-
scribed previously, can be written as follows:

term :: Parse Term
term = [Vur x 1 3: 4- namelParSe

0 [Lam 2 t) () t lit ‘(‘; () c Iit ‘X’;
x t name; () c lit ‘-+‘;
t t term; () + fit ‘)‘]parse

0 [App t u 1 () t lit ‘(‘; t t term;
u t term; () t lit ‘)‘jParse

name :: Parse Name
name = [c 1 c +- next; ‘a’ < c; c 5 ‘z’lParse.

Here, for simplicity, it has been assumed that names
consist of a single lower-case letter, so Name = Char;
and that A and -) are both characters.

7.2 Exceptions

The type Maybe x consists of either a value of x, written
Just x, or an exceptional value, written Nothing:

data Maybe x = Just x 1 Nothing.

(The names are due to Spivey [Spi89].) The following
operations make this into a monad:

map Maybe f (Just x) = Just (f x)
map Maybe f Nothing = Nothing

unitMaybe x = Just x

joinMaYbe (Just (Just x)) = Just x
join Maybe (Just Nothing) = Nothing
joinM4ybe Nothing = Nothing.

It follows from these definitions that

[(x, y) 1 x - 5’; y - qMaybe

returns Just (x, y) if ZF is Just x and 7 is Just y, and
otherwise returns Nothing.

There is also a suitable zero for this monad, given by

zeroMaYb e Y = Nothing.

73

Hence [IMaybe = Nothing and [xlMaybe = JUST 2. For
example, [2: - 1 1 z 2 llMaybe returns one less than z if
x is positive, and Nothing otherwise.

Two useful operations test whether an argument cor-
responds to a value and, if so, return that value:

exists :: Maybe x + Boo1
exists (Just x) = True
exists Nothing = False

the :: Maybe x -+ x
the (Just x) = t.

Observe that

[the T 1 existsTIMaybe = F

for all ?i? :: Maybe 2. If we assume that (the Nothing) =
I, it is easily checked that the is a monad morphism
from Maybe to Str, and corresponds to the usual trick
of considering error values and I to be identical. We
have that

a.s an immediate consequence of the monad morphism
law.

The biased-choice operator chooses the first of two
possible values that is well defined:

(3 :: Maybe x -+ Maybe x + Maybe x
Z?Tj = if exists f then T else 3,

The ? operation is associative and has Nothing as a
unit. It appeared in early versions of ML [GMW79],
and similar operators appear in other languages. As an
example of its use, the term

the ([x - 1 1 x > llMaybe ? [OIMaybe)

returns the predecessor of x if it is non-negative, and
zero otherwise.

In [Wad851 it was proposed to use lists to represent
exceptions, encoding a value x by the unit list, and an
exception by the empty list. This corresponds to the

map

maybe :: Maybe x -+ List x
maybe (Just x) = [xlList
maybe Nothing = [IList

which is a monad morphism from Maybe to List. We
have that

maybe (Z??j) 2 (maybeT) -it (maybe?j),

where & is the sublist relation. Thus, exception compre-
hensions can be represented by list comprehensions, and
biased choice can be represented by list concatenation.
The argument in [Wad851 that list comprehensions pro-
vide a convenient notation for manipulating exceptions
ca.n be mapped, via this morphism, into an argument in
favour of exception comprehensions!

7.3 Continuations

Fix a type R of results. The monad of continuations is
given by

type Cont x = (x + R) + R
mapCont f 3 = Ak-GqAx-+k(fx))
unit “71~ x = Xk+kx

join Cant y = Ak ---, ?(A57 --f ??(Ax 3 k x)).

A continuation of type x takes a continuation function
k :: x + R, which specifies how to take a value of
type x into a result of type R, and returns a result of
type R. The unit takes a value x into the continuation
Xk + k x that applies the continuation function to the
given value. It follows from these definitions that

[(2, y) 1 x t f; y c 7pt
= Xk -+I(Xx - ?Ji(Xy --+ k (x, Y))).

This can be read as follows: evaluate Z, bind x to the
result, then evaluate 8, bind y to the result, then return
the pair (2, y).

A useful operation in this monad is

callcc :: ((x --t Cont y) + Cont x) -+ Cont 2
callcc g = Xk-+g(Xx-+Ak’--+kx)k.

This mimics the “call with current continuation” (or
call-cc) operation popular from Scheme [RCXG]. For
example, the Scheme program

(call-cc (lambda (esc)

U x (if (= Y 0) (esc 42) Y>>>>

translates to the equivalent program

callcc (Xesc -+
[z/zIzeify= 0 then esc 42 else y] ‘On’.

Both of these programs bind esc to an escape function
that returns its argument as the value of the entire callcc
expression. They then return the value of x divided by
y, or return 42 in the case that y is zero.

8 Translation

In Section 4, we saw that a function of type x - y in
an (impure) functional language that manipulates state
corresponds to a function of type x + ST y in a (pure)
functional program. The correspondence was drawn in
an informal way, so we might ask, what assurance is
there that every program can be translated in a similar
way? This section provides that assurance, in the form
of a translation of lambda calculus into an arbitrary
monad. This allows us to translate not only programs

74

t,hat manipulate state, but also programs that raise ex-
ceptions, call continuations, and so on. Indeed, we shall
see that there are two translations, one call-by-value and
one call-by-name. The target language of both transla-
t.ions is a pure, non-strict X-calculus, augmented with
M-comprehensions.

We will perform our translations on a simple typed
lambda calculus. We will use T, CJ, V to range over
t,ypes, and K to range over base types. A type is either
a. base type, function type, or product type:

T,U,V ::= KJ(U--, V)l(U,V>.

We will use f, U, v to range over terms, and z to range
over variables. A term is either a variable, an abstrac-
tion, an application, a pair, or a selection:

t,u,v ::= x 1 (Xx -+ v> I (t u) I (u, VI I w 1) I (snd 4.

We will use A to range over assumptions, which are lists
associating variables with types:

A ::= x1:: Tl,...,zn :: T,,.

We write the typing A l- 1 :: T to indicate that under
assumption A the term t has type T. The inference
rules for well-typings in this calculus are well known, so
they are omitted to save space.

The call-by-value translation of lambda-calculus into
a. monad M is given in Figure 7. The translation of the
type T is written T’ and the translation of the term 1
is written i*. The rule for translating function types,

(V-+ v>* = V”--+M V’,

can be read “a call-by-value function takes as its argu-
ment a value of type U and returns a computation of
t,ype V." This corresponds to the translation in Sec-
tion 4, where a function of type z -+ y in the (im-
pure) source language is translated to a function of type
z 4 M y in the (pure) target language. Each of the
rules for translating terms has astraightforward compu-
tational reading. For example, the rule for applications,

(tu)* = [%)x+t*;y+u*;%+(xy)]“,

can be read “to apply t to U, first evaluate t (call the
result x), then evaluate u (call the result y), then apply
T to y (call the result z) and return 2.” This is what one
would expect in a call-by-value language - the argument
is evaluated before the function is applied. If

x1 :: Tl,...,x, :: T,, I- 2 :: T

is a well-typing in the source language, then its transla-
tion

x1:: T;,...,x, :: T,: t 1' ::M T'

Types

K* = IC

(U-, V)’ = (U*-,MV*)

(V, v>* = (cl', V')

Terms

*

;A

= [x]M

x 4 v>* = [(Xx + v’)JM

(1 u)* = [r(xtt*;ytu*;%+(xy)]M

h v>* = [(x,y) 1 x t u*; y + v’]M

w 0’ = [(fst x) 1 2 + t*lM

Environments

(x1 :: TI,...,~, :: Tn)+
= xl :: T;,x. :: T;

Typings

(At 1:: T)' = A'!- I* ::MT*

Figure 7: Call-by-value translation.

is a well-typing in the target language. Like the ar-
guments of a function, the free variables correspond to
values, while, like the result of a function, the term cor-
responds to a computation.

The call-by-name translation of J-calculus into a
monad M is given in Figure 8. Now the translation
of the type T is written T+ and the translation of the
term 2 is written ft. The rule for translating function

types,
(Lb')+ = MU+*MV+,

can be read “a call-by-name function takes as its argu-
ment a computation of type U and returns a computa-
tion of type V." The rule for applications,

(t u)+ = [y 1 x + t+; y t (x u+)]M,

can be read “to apply 1 to U, first evaluate t (call the
result I), then apply x to the term u (call the result
y) and return y.” This is what one would expect in a
call-by-name language - the argument u is passed un-
evaluated, and is evaluated each time it is used. The
well-typing in the source language given previously now
translates to

xl :: MT;,., .,I, ::M T; t t+ ::M T+,

which is again a well-typing in the target language. This
time both the free variables and the term correspond to

75

Types

K+ = K

(U + V)+ = (M U+ + M V+)

(U, v>+ = (M U+, M V+)

Terms

x+ = x

(Xx + v)+ = [(Ax + v+> y

(1 u>+ = [y Ix c-t+; y +(xu+)p

(u, v>+ = [(ut, V’)pf

(fst t)+ = [yIm--t+;y~(fstz)]M

Environments

(21 :: Tl,...,X, :: T,,)+

= x1 :: M Tj, . . . ,x, :: M T,!

Typings

(A I- t :: T)+ = A+ I- t+ :: M T+

Figure 8: Call-by-name translation.

computations, reflecting that in a call-by-value language
the free variables correspond to computations (or clo-
sures) that must be evaluated each time they are used.

In particular, the call-by-value intrepretation in the
strictness monad Sir of Section 3.2 yields the usual
strict semantics of /\-calculus, whereas the call-by-name
interpretation in the same monad yields the usual lazy
semantics.

If we use the monad of, say, state transformers then
the call-by-value interpretation yields the usual seman-
tics of a Lcalculus with assignment. The call-by-name
interpretation yields a semantics where the state trans-
formation specified by a variable occurs each time the
variable is accessed. This explains why the second trans-
l&ion is titled call-by-name rather than call-by-need. Of
course, since the target of both translations is a pure,
non-strict X-calculus, there is no problem with execut-
ing translated programs under a lazy (i.e., call-by-need)
implementation.

8.1 Example: Non-determinism

As a more detailed example of the application of the
translation schemes, consider a small non-deterministic
language. This consists of the X-calculus as defined
above with its syntax extended to include a non-

deterministic choice operator (t-t) and simple arithmetic:

t,u,v ::= 9.. I (t LJ u) I n I (t + 4,

where n ranges over integer constants. This language
is typed just as for lambda calculus. We assume a base
type Int, and the additional constructs typed as follows:
foranytypeT,ifL:: Tandu:: Tthen(1Uu):: T;and
n :: Int; and if t :: Int and u :: Int then (1 + u) :: Int.
For example, the term

((Au --+ a + a) (1 U 2))

has the type ht. Under a call-by-value interpretation
we would expect this to return either 2 or 4 (i.e., 1 + 1
or 2 + 2), whereas under a call-by-name interpretation
we would expect this to return 2 or 3 or 4 (i.e., I+ 1 or
1+2or2+1or2+2).

We will give the semantics of this language by inter-
preting the X-calculus in the set monad. This is speci-
fied, as one would expect, by

mapSetfT = {f1:Ix-l
unit Set x = {xl

joinSet~

= us.

It is easy to check that the resulting SeLcomprehensions
correspond to the traditional usage, and in what follows
we will write { t 1 q } in preference to the more cumber-
some [t 1 qlSet.

The call-by-value interpretation for this language is
provided by the rules in Figure 7, choosing h4 to be the
monad Set, together with the rules:

t Uu’ = t*uu*
n* = in)
t + u* = {x+yIx+-t*;y+-u*}.

These rules translate a term of type T in the non-
deterministic language into a term of type Set T in the
pure functional language (which includes monad com-
prehensions). For example, the term above translates
to

it lx +-{Pa -+ { 2’ + 9’ I 2’ - {a); Y’ + {a) 1) 1;
Y + w u w
2 -(xyH

which has the value {2,4}, as expected.
The call-by-name translation of the same language is

provided by the rules in Figure 8. The rules for (2 U u),
n, and (d + u) are the same as the call-by-value rules,
replacing replacing (-)* with (-)t. Now the same term
translates to

{ y 1 x c { (Aa ---t { 2’ + y’ 1 x’ e a; y’ c a }) };

Y +- ~wPJwH

76

*

;A
= Ak+kx

2 + v)* = AR + k (AZ -* 21’)
(t u>* = Xk + t* (Xx ---f u* (Ay - 3: y k))
(u, VI’ = Ak 4 u* (Ax + v* (Ay + k(u, v)))
(fst I)* = Xk --, t* (Xx 4 k (fsl2T))

Figure 9: Continuation-passing style

which has the value {2,3,4}, as expected.
A similar approach to non-deteminism is taken by

Hughes and O’Donnell [H089]. They suggest adding
a set type to a lazy functional language where a set
is actually represented by a non-deterministic choice of
one of the elements of the set. The primitive opera-
tions they provide on sets are just map, unit, and join
of the set monad, plus set union (U) to represent non-
deterministic choice. They address the issue of how such
sets should behave with respect to I, and present an el-
egant derivation of a non-deterministic, parallel, tree
search algorithm. However, they provide no argument
tha.t any program in a traditional non-deterministic
functional language can be encoded in their approach.
Such an argument is provided by the translation scheme
a ove. b

8.2 Example: Continuations

As a final example, consider the call-by-value interpre-
tation under the monad of continuations, Cont, given
in Section 7.3. Applying straightforward calculation
to simplify the Cont-comprehensions yields the trans-
lation scheme given in Figure 9, which is simply the
continuation-passing style beloved by many theorists
and compiler writers. It is left to the reader to perform
a similar calculation on the other translation scheme
to yield a call-by-value version of continuation-passing
style (which is less well known, but can be found in

P&41).

Acknowledgements

This work owes a great deal to Eugenio Moggi: I thank
him for his ideas, and for the time he took to explain
them to me. I thank John Launchbury for his enthusi-
a.sm and suggestions, and for helpful comments I thank
Arvind, Olivier Danvy, Kevin Hammond, John Hughes,
Karsten Kehler Holst, Austin Melton, Nikhil, Simon
Pcyton Jones, Andy Pitts, Andre Scedrov, Carolyn Tal-

cott, Phil Trinder, and attenders of the 1989 Glasgow
Summer School on Category Theory and Constructive
Logic. And special thanks to Catherine Lyons for added
commas and hyphens.

References

[Blo89]

[SW851

[BwS~]

[Fai87]

[FL891

F-b@81

[GL88]

[GH90]

A. Bloss, Update analysis and the effi-
cient implementation of functional aggre-
gates. In 4’ih Symposium on Functional Pro-
gramming Languages and Computer Archi-
tecture, ACM, London, September 1989.

M. Barr and C. Wells, Toposes, Triples, and
Theories. Springer Verlag, 1985.

R. Bird and P. Wadler, Introduction to Func-
tional Programming. Prentice Hall, 1988.

J. Fairbairn, Form follows function. Softurare
- Practice and Experience, 17(6):379-386,
June 1987.

R. Frost and J. Launchbury, Construct-
ing natural language interpreters in a lazy
functional language. The Computer Journal,
32(2):108-121, April 1989.

J. A. Goguen, Higher order functions consid-
ered unnecessary for higher order program-
ming. Technical report SRI-CSL-88-1, SRI
International, January 1988.

D. K. Gifford and J. M. Lucassen, Integrat-
ing functional and imperative programming.
In ACM Conference on Lisp and Functional
Programming, pp. 28-39, Cambridge, Mas-
sachusetts, August 1986.

J. Guzman and P. Hudak, Single-threaded
polymorphic lambda calculus. In IEEE Sym-
posium on Logic in Computer Science,
Philadelphia, June 1990.

[GMW79] M. Gordon, R. Milner, and C. Wadsworth,
Edinburgh LCF. LNCS 78, Springer-Verlag,
1979.

[Ho1831 S. Holmstrom, A simple and efficient way to
handle large data structures in applicative
languges. In Proceedings SERC/Chalmers
Workshop on Declarative Programming, Uni-
versity College London, 1983.

[Hud86a] P. Hudak, A semantic model of reference
counting and its abstraction (detailed sum-
mary). In ACM Conference on Lisp and

77

Functional Programming, pp. 351-363, Cam-
bridge, Massachusetts, August 1986.

[llMT88] R. Harper, R. Milner, and M. Tofte, The
definition of Standard ML, version 2. Re-
port ECS-LFCS-88-62, Edinburgh Univer-
sity, Computer Science Dept., 1988.

[IIud86b] P. Hudak, Arrays, non-determinism, side-
effects, and parallelism: a functional perspec-
tive. In J. H. Fasel and R. M. Keller, edi-
tors, Workshop on Graph Reduction, Santa
Fe, New Mexico, September-October 1986.
LNCS 279, Springer-Verlag, 1986.

[Bug891

[II0891

[II W90]

[LS86]

[Mac711

[A4 i184]

[fi4T89]

J. Hughes, Why functional programming
matters. The Computer Journal, 32(2):98-
107, April 1989.

J. Hughes and J. O’Donnell, Expressing and
reasoning about non-deterministic functional
programs. Glasgow Workshop on Functional
Programming, Fraserburgh, August 1989.

P. Hudak and P. Wadler, editors, Report on
the Programming Language Haskell. Techni-
cal report, Yale University and Glasgow Uni-
versity, April 1990.

J. Lambek and P. Scott, Introduction to
Higher Order Categorical Logic, Cambridge
University Press, 1986.

S. Mac Lane, Categories for the Working
Mathematician, Springer-Verlag, 1971.

R. Milner, A proposal for Standard ML. In
ACM Symposium on Lisp and Functional
Programming, Austin, Texas, August 1984.

I. Mason and C. Talcott, Axiomatising oper-
ational equivalence in the presence of side ef-
fects. In IEEE Symposium on Logic in Com-
puter Science, Asilomar, California, June
1989.

[hlog89a] E. Moggi, Computational lambda-calculus
and monads. In IEEE Symposium on Logic
in Computer Science, Asilomar, California,
June 1989. (A longer version is available as a
technical report from the University of Edin-
burgh.)

[h4og89b] E. Moggi, An abstract view of programming
languges. Course notes, University of Edin-
burgh.

[RC86]

BY741

by831

[Sch85]

[Spi89]

[Tur82]

[Tur85]

[Wad851

[Wad871

[Wad891

[WadSO]

J . Rees and W. Clinger (eds.), The
revised3 report on the algorithmic language
Scheme. ACM SIGPLAN Notices, 21(12):37-
79 (1986).

J. C. Reynolds, On the relation between di-
rect and continuation semantics. In Collo-
quium on Automata, Languages and PTO-
gramming, Saarbriicken, July-August 1974,
LNCS 14, Springer-Verlag, 1974.

J. C. Reynolds, Types, abstraction, and para-
metric polymorphism. In R. E. A. Mason,
editor, Information Processing 83, 513-523,
North-Holland, Amsterdam.

D. A. Schmidt, Detecting global variables
in denotational specifications. ACM Tmns-
actions on Programming Languages and Sys-
tems, 7:299-310, 1985.

M. Spivey, Term rewriting without excep-
tions, Science of Computer Programming,
1989.

D. A. Turner, Recursion equations as a pro-
gramming language. In J. Darlington, P. Hen-
derson, and D. A. Turner, editors, Functional
Programming and its Applications, Cam-
bridge University Press, 1982.

D. A. Turner, Miranda: A non-strict func-
tional language with polymorphic types. In
Proceedings of the 2’nd International Conjer-
ence on Functional Programming Languages
and Computer Architecture, Nancy, France,
September 1985. LNCS 201, Springer Verlag,
1985.

P. Wadler, How to replace failure by a list of
successes. In Z’nd Symposium on Functional
Programming Languages and Computer Ar-
chitecture, Nancy, September 1985. LNCS
273, Springer-Verlag, 1985.

P. Wadler, List comprehensions. In S. L. Pey-
ton Jones, The Implementation of Functional
Programming Languages, Prentice Hall, 1987.

P. Wadler, Theorems for free! In 4’th Sympo-
sium on Functional Programming Languages
and Computer Architecture, ACM, London,
September 1989.

P. Wadler , Linear types can change the world!
In IFIP Working Conference on Program-
ming Concepts and Methods, Sea of Gallilee,
Israel, April 1990.

78

