
The essence of functional programmingPhilip Wadler, University of Glasgow�AbstractThis paper explores the use monads to structure functional programs. No priorknowledge of monads or category theory is required.Monads increase the ease with which programs may be modi�ed. They canmimic the e�ect of impure features such as exceptions, state, and continuations;and also provide e�ects not easily achieved with such features. The types of aprogram re
ect which e�ects occur.The �rst section is an extended example of the use of monads. A simple inter-preter is modi�ed to support various extra features: error messages, state, output,and non-deterministic choice. The second section describes the relation betweenmonads and continuation-passing style. The third section sketches how monads areused in a compiler for Haskell that is written in Haskell.1 IntroductionShall I be pure or impure?Pure functional languages, such as Haskell or Miranda, o�er the power of lazy eval-uation and the simplicity of equational reasoning. Impure functional languages, such asStandard ML or Scheme, o�er a tempting spread of features such as state, exceptionhandling, or continuations.One factor that should in
uence my choice is the ease with which a program can bemodi�ed. Pure languages ease change by making manifest the data upon which eachoperation depends. But, sometimes, a seemingly small change may require a program ina pure language to be extensively restructured, when judicious use of an impure featuremay obtain the same e�ect by altering a mere handful of lines.Say I write an interpreter in a pure functional language.To add error handling to it, I need to modify the result type to include error values,and at each recursive call to check for and handle errors appropriately. Had I used animpure language with exceptions, no such restructuring would be needed.�Author's address: Department of Computing Science, University of Glasgow, Glasgow G12 8QQ,Scotland. E-mail: wadler@dcs.glasgow.ac.uk.To be presented as an invited talk at 19'th Annual Symposium on Principles of Programming Languages,Santa Fe, New Mexico, January 1992. This version di�ers slightly from the conference proceedings.1

To add an execution count to it, I need to modify the the result type to include sucha count, and modify each recursive call to pass around such counts appropriately. HadI used an impure language with a global variable that could be incremented, no suchrestructuring would be needed.To add an output instruction to it, I need to modify the result type to include anoutput list, and to modify each recursive call to pass around this list appropriately. HadI used an impure language that performed output as a side e�ect, no such restructuringwould be needed.Or I could use a monad.This paper shows how to use monads to structure an interpreter so that the changesmentioned above are simple to make. In each case, all that is required is to rede�ne themonad and to make a few local changes. This programming style regains some of the
exibility provided by various features of impure languages. It also may apply when thereis no corresponding impure feature.The technique applies not just to interpreters, but to a wide range of functional pro-grams. The GRASP team at Glasgow is constructing a compiler for the functional lan-guage Haskell. The compiler is itself written in Haskell, and uses monads to good e�ect.Though this paper concentrates on the use of monads in a program tens of lines long, italso sketches our experience using them in a program three orders of magnitude larger.Programming with monads strongly reminiscent of continuation-passing style (CPS),and this paper explores the relationship between the two. In a sense they are equivalent:CPS arises as a special case of a monad, and any monad may be embedded in CPS bychanging the answer type. But the monadic approach provides additional insight andallows a �ner degree of control.The concept of a monad comes from category theory, but this paper assumes noprior knowledge of such arcana. Rather, it is intended as a gentle introduction, with anemphasis on why abstruse theory may be of interest to computing scientists.The examples will be given in Haskell, but no knowledge of that is needed either. Whatthe reader will require is a passing familiaritywith the basics of pure and impure functionalprogramming; for general background see [BW87, Pau91]. The languages refered to areHaskell [HPW91], Miranda1 [Tur90], Standard ML [MTH90], and Scheme [RC86].Some readers will recognise that the title of this paper is a homage to Reynolds [Rey81]and that the use of monads was inspired by Moggi [Mog89a, Mog89b]. Of these mattersmore will be said in the conclusion. For now, please note that the word \essence" is usedin a technical sense: I wish to argue that the technique described in this paper is helpful,not that it is necessary.The remainder of this paper is organised as follows. Section 2 illustrates the use ofmonads to structure programs by considering several variations of an interpreter. Section 3explores the relation between monads and continuation-passing style. Section 4 sketcheshow these ideas have been applied in a compiler for Haskell that is itself written in Haskell.Section 5 concludes.1Miranda is a trademark of Research Software Limited.2

2 Interpreting monadsThis section demonstrates the thesis that monads enhance modularity, by presentingseveral variations of a simple interpreter for lambda calculus.The interpreter is shown in Figure 1. It is written in Haskell. The notation(\name -> expr) stands for a lambda expression, and `name` is an in�x operator. Thetype constructor M and functions unitM, bindM, and showM have to do with monads, andare explained below.The interpreter deals with values and terms. A value is either Wrong, a number, or afunction. The value Wrong indicates an error, such as an unbound variable, an attemptto add non-numbers, or an attempt to apply a non-function.A term is either a variable, a constant, a sum, a lambda expression, or an application.The following will serve as test data.term0 = (App (Lam "x" (Add (Var "x") (Var "x")))(Add (Con 10) (Con 11)))In more conventional notation this would be written ((�x: x + x) (10 + 11)). For thestandard interpreter, evaluating test term0 yields the string "42".The interpreter has been kept small for ease of illustration. It can easily been extendedto deal with additional values, such as booleans, pairs, and lists; and additional termforms, such as conditional and �xpoint.2.1 What is a monad?For our purposes, a monad is a triple (M,unitM,bindM) consisting of a type constructorM and a pair of polymorphic functions.unitM :: a -> M abindM :: M a -> (a -> M b) -> M bThese functions must satisfy three laws, which are discussed in Section 2.10.The basic idea in converting a program to monadic form is this: a function of typea -> b is converted to one of type a -> M b. Thus, in the de�nition of Value, func-tions have type Value -> M Value rather than Value -> Value, and interp has typeTerm -> Environment -> M Value rather than type Term -> Environment -> Value.Similarly for the auxiliary functions lookup, add, and apply.The identity function has type a -> a. The corresponding function in monadic formis unitM, which has type a -> M a. It takes a value into its corresponding representationin the monad.Consider the case for constants.interp (Con i) e = unitM (Num i)The expression (Num i) has type Value, so applying unitM to it yields the correspondingM Value, as required to match the type of interp.Two functions k :: a -> b and h :: b -> c may be composed by writing3

type Name = Stringdata Term = Var Name| Con Int| Add Term Term| Lam Name Term| App Term Termdata Value = Wrong| Num Int| Fun (Value -> M Value)type Environment = [(Name, Value)]showval :: Value -> Stringshowval Wrong = "<wrong>"showval (Num i) = showint ishowval (Fun f) = "<function>"interp :: Term -> Environment -> M Valueinterp (Var x) e = lookup x einterp (Con i) e = unitM (Num i)interp (Add u v) e = interp u e `bindM` (\a ->interp v e `bindM` (\b ->add a b))interp (Lam x v) e = unitM (Fun (\a -> interp v ((x,a):e)))interp (App t u) e = interp t e `bindM` (\f ->interp u e `bindM` (\a ->apply f a))lookup :: Name -> Environment -> M Valuelookup x [] = unitM Wronglookup x ((y,b):e) = if x==y then unitM b else lookup x eadd :: Value -> Value -> M Valueadd (Num i) (Num j) = unitM (Num (i+j))add a b = unitM Wrongapply :: Value -> Value -> M Valueapply (Fun k) a = k aapply f a = unitM Wrongtest :: Term -> Stringtest t = showM (interp t [])Figure 1: Interpretation in a monad (call-by-value)4

\a -> let b = k a in h bwhich has type a -> c. (Here \name -> expr is a lambda expression. By convention, awill double as a type variable and a value variable.) Similarly, two functions in monadicform k :: a -> M b and h :: b -> M c are composed by writing(\a -> k a `bindM` (\b -> h b))which has type a -> M c. (Here `name` is Haskell notation for an in�x function. Theexpression a `name` b is equivalent to name a b.) Thus bindM serves a role similar to alet expression. The three monad laws alluded to above simply insure that this form ofcomposition is associative, and has unitM as a left and right identity.Consider the case for sums.interp (Add u v) e = interp u e `bindM` (\a ->interp v e `bindM` (\b ->add a b))This can be read as follows: evaluate u; bind a to the result; evaluate v; bind b to theresult; add a to b. The types work out: the calls to interp and add yield results of typeM Value, and variables a and b have type Value.Application is handled similarly; in particular, both the function and its argumentare evaluated, so this interpreter is using a call-by-value strategy. An interpreter with acall-by-name strategy is discussed in Section 2.Just as the type Value represents a value, the type M Value can be thought of asrepresenting a computation. The purpose of unitM is to coerce a value into a computation;the purpose of bindM is to evaluate a computation, yielding a value.Informally, unitM gets us into a monad, and bindM gets us around the monad. Howdo we get out of the monad? In general, such operations require a more ad hoc design.For our purposes, it will su�ce to provide the following.showM :: M Value -> StringThis is used in test.By changing the de�nitions of M, unitM, bindM, and showM, and making other smallchanges, the interpreter can be made to exhibit a wide variety of behaviours, as will nowbe demonstrated.2.2 Variation zero: Standard interpreterTo begin, de�ne the trivial monad.type I a = aunitI a = aa `bindI` k = k ashowI a = showval a 5

This is called the identity monad: I is the identity function on types, unitI is the identityfunction, bindI is post�x application, and showI is equivalent to showval.Substitute monad I for monad M in the interpreter (that is, substitute I, unitI, bindI,showI for each occurrence of M, unitM, bindM, showM). Simplifying yields the standardmeta-circular interpreter for lambda calculus:interp :: Term -> Environment -> Valueinterp (Var x) e = lookup x einterp (Con i) e = Num iinterp (Add u v) e = add (interp u e) (interp v e)interp (Lam x v) e = Fun (\a -> interp v ((x,a):e))interp (App t u) e = apply (interp t e) (interp u e)The other functions in the interpreter simplify similarly.For this variant of the interpreter, evaluating test term0 returns the string "42", aswe would expect.2.3 Variation one: Error messagesTo add error messages to the interpreter, de�ne the following monad.data E a = Success a | Error StringunitE a = Success aerrorE s = Error s(Success a) `bindE` k = k a(Error s) `bindE` k = Error sshowE (Success a) = "Success: " ++ showval ashowE (Error s) = "Error: " ++ sEach function in the interpreter either returns normally by yielding a value of the formSuccess a, or indicates an error by yielding a value of the form Error s where s is anerror message. If m :: E a and k :: a -> E b then m `bindE` k acts as strict post�xapplication: if m succeeds then k is applied to the successful result; if m fails then sodoes the application. The show function displays either the successful result or the errormessage.To modify the interpreter, substitute monad E for monad M, and replace each occur-rence of unitE Wrong by a suitable call to errorE. The only occurrences are in lookup,add, and apply.lookup x [] = errorE ("unbound variable: " ++ x)add a b = errorE ("should be numbers: " ++ showval a++ "," ++ showval b)apply f a = errorE ("should be function: " ++ showval f)6

No other changes are required.Evaluating test term0 now returns "Success: 42"; and evaluatingtest (App (Con 1) (Con 2))returns "Error: should be function: 1".In an impure language, this modi�cation could be made using exceptions or continu-ations to signal an error.2.4 Variation two: Error messages with positionsLet Position be a type that indicates a place in the source text (say, a line number).Extend the Term datatype with a constructor that indicates a location:data Term = ... | At Position TermThe parser will produce such terms as suitable. For instance, (At p (App t (At q u)))indicates that p is the position of the term (App t u) and that q is the position of thesubterm u.Based on E, de�ne a new monad P that accepts a position to use in reporting errors.type P a = Position -> E aunitP a = \p -> unitE aerrorP s = \p -> errorE (showpos p ++ ": " ++ s)m `bindP` k = \p -> m p `bindE` (\x -> k x p)showP m = showE (m pos0)Here unitP discards the current position, errorP adds it to the error message, bindPpasses the position to the argument and function, and showP passes in an initial positionpos0. In addition, there is a function to change position.resetP :: Position -> P x -> P xresetP q m = \p -> m qThis discards the position p that is passed in, replacing it with the given position q.To modify the interpreter of the previous section, substitute monad P for monad Eand add a case to deal with At terms.interp (At p t) e = resetP p (interp t e)This resets the position as indicated. No other change is required.Without monads, or a similar technique, this modi�cation would be far more tedious.Each clause of the interpreter would need to be rewritten to accept the current positionas an additional parameter, and to pass it on as appropriate at each recursive call.In an impure language, this modi�cation is not quite so easy. One method is to usea state variable that contains a stack of positions. Care must be taken to maintain thestate properly: push a position onto the stack on entering the At construct and pop aposition o� the stack when leaving it. 7

2.5 Variation three: StateTo illustrate the manipulation of state, the interpreter is modi�ed to keep count of thenumber of reductions that occur in computing the answer. The same technique couldbe used to deal with other state-dependent constructs, such as extending the interpretedlanguage with reference values and operations that side-e�ect a heap.The monad of state transformers is de�ned as follows.type S a = State -> (a, State)unitS a = \s0 -> (a, s0)m `bindS` k = \s0 -> let (a,s1) = m s0(b,s2) = k a s1in (b,s2)A state transformer takes an initial state and returns a value paired with the new state.The unit function returns the given value and propagates the state unchanged. The bindfunction takes a state transformer m :: S a and a function k :: a -> S b. It passes theinitial state to the transformer m; this yields a value paired with an intermediate state;function k is applied to the value, yielding a state transformer (k a :: S b), which ispassed the intermediate state; this yields the result paired with the �nal state.To model execution counts, take the state to be an integer.type State = IntThe show function is passed the initial state 0 and prints the �nal state as a count.showS m = let (a,s1) = m 0in "Value: " ++ showval a ++ "; " ++"Count: " ++ showint s1The current count is incremented by the following.tickS :: S ()tickS = \s -> ((), s+1)The value returned is the empty tuple () whose type is also written (). The typing oftickS makes clear that the value returned is not of interest. It is analogous to the use inan impure language of a function with result type (), indicating that the purpose of thefunction lies in a side e�ect.The interpreter is modi�ed by substituting monad S for monad M, and changing the�rst lines of apply and add.apply (Fun k) a = tickS `bindS` (\() -> k a)add (Num i) (Num j) = tickS `bindS` (\() -> unitS (Num (i+j)))8

This counts one tick for each application and addition. No other changes are required.Evaluating test term0 now returns "Value: 42; Count: 3".A further modi�cation extends the language to allow access to the current executioncount. First, add a further operation to the monad.fetchS :: S StatefetchS = \s -> (s, s)This returns the current count. Second, extend the term data type, and add a new clauseto the interpreter.data Term = ... | Countinterp Count e = fetchS `bindS` (\i -> unitS (Num i))Evaluating Count fetches the number of execution steps performed so far, and returns itas the value of the term.For example, applying test to(Add (Add (Con 1) (Con 2)) Count)returns "Value: 4; Count: 2", since one addition occurs before Count is evaluated.In an impure language, these modi�cations could be made using state to contain thecount.2.6 Variation four: OutputNext we modify the interpreter to perform output. The state monad seems a naturalchoice, but it's a poor one: accumulating the output into the �nal state means no outputwill be printed until the computation �nishes. The following design displays output as itoccurs; it depends on lazy evaluation.The output monad is de�ned as follows.type O a = (String, a)unitO a = ("", a)m `bindO` k = let (r,a) = m; (s,b) = k a in (r++s, b)showO (s,a) = "Output: " ++ s ++ " Value: " ++ showval aEach value is paired with the output produced while computing that value. The unitOfunction returns the given value and produces no output. The bindO function performsan application and concatenates the output produced by the argument to the outputproduced by the application. The showO function prints the output followed by the value.The above functions propagate output but do not generate it; that is the job of thefollowing.outO :: Value -> O ()outO a = (showval a ++ "; ", ())9

This outputs the given value followed by a semicolon.The language is extended with an output operation. Substitute monad O for monadM, and add an a new term and corresponding clause.data Term = ... | Out Terminterp (Out u) e = interp u e `bindO` (\a ->outO a `bindO` (\() ->unitO a))Evaluating (Out u) causes the value of u to be sent to the output, and returned as thevalue of the term.For example, applying test to(Add (Out (Con 41)) (Out (Con 1)))returns "Output: 41; 1; Value: 42".In an impure language, this modi�cation could be made using output as a side e�ect.2.7 Variation �ve: Non-deterministic choiceWe now modify the interpreter to deal with a non-deterministic language that returns alist of possible answers.The monad of lists is de�ned as follows.type L a = [a]unitL a = [a]m `bindL` k = [b | a <- m, b <- k a]zeroL = []l `plusL` m = l ++ mshowL m = showlist [showval a | a <- m]This is expressed with the usual list comprehension notation. The function showlisttakes a list of strings into a string, with appropriate punctuation.The interpreted language is extended with two new constructs. Substitute monad Lfor monad M, and add two new terms and appropriate clauses.data Term = ... | Fail | Amb Term Terminterp Fail e = zeroLinterp (Amb u v) e = interp u e `plusL` interp v eEvaluating Fail returns no value, and evaluating (Amb u v) returns all values returnedby u or v.For example, applying test to 10

(App (Lam "x" (Add (Var "x") (Var "x"))) (Amb (Con 1) (Con 2)))returns "[2,4]".It is more di�cult to see how to make this change in an impure language. Perhapsone might create some form of coroutine facility.2.8 Variation six: Backwards stateReturn now to the state example of Section 2.5. Lazy evaluation makes possible a strangevariation: the state may be propogated backward.All that is required is to change the de�nition of bindS.m `bindS` k = \s2 -> let (a,s0) = m s1(b,s1) = k a s2in (b,s0)This takes the �nal state as input, and returns the initial state as output. As before,the value a is generated by m and passed to k. But now the initial state is passed to k, theintermediate state goes from k to m, and the �nal state is returned by m. The two clausesin the let expression are mutually recursive, so this works only in a lazy language.The Count term de�ned in Section 2.5 now returns the number of steps to be performedbetween its evaluation and the end of execution. As before, applying test to(Add (Add (Con 1) (Con 2)) Count)returns "Value: 4; Count: 2", but for a di�erent reason: one addition occurs after thepoint at which Count is evaluated. An unresolvable mutual dependence, known as ablack hole, would arise in the unfortunate situation where the number of steps yet to beperformed depends on the value returned by Count. In such a case the interpreter wouldfail to terminate or terminate abnormally.This example may seem contrived, but this monad arises in practice. John Hughesand I discovered it by analysing a text processing algorithm that passes information bothfrom left to right and right to left.To make this change in an impure language is left as an exercise for masochistic readers.2.9 Call-by-name interpreterThe interpreter of Figure 1 is call-by-value. This can be seen immediately from thetypes. Functions are represented by the type Value -> M Value, so the argument to afunction is a value, though the result of applying a function is a computation.The corresponding call-by-name interpreter is shown in Figure 2. Only the types andfunctions that di�er from Figure 1 are shown. The type used to represent functions is nowM Value -> M Value, so the argument to a function is now a computation. Similarly,the environment is changed to contain computations rather than values. The code forinterpreting constants and addition is unchanged. The code for variables and lambda11

data Value = Wrong| Num Int| Fun (M Value -> M Value)type Environment = [(Name, M Value)]interp :: Term -> Environment -> M Valueinterp (Var x) e = lookup x einterp (Con i) e = unitM (Num i)interp (Add u v) e = interp u e `bindM` (\a ->interp v e `bindM` (\b ->add a b))interp (Lam x v) e = unitM (Fun (\m -> interp v ((x,m):e)))interp (App t u) e = interp t e `bindM` (\f ->apply f (interp u e))lookup :: Name -> Environment -> M Valuelookup x [] = unitM Wronglookup x ((y,n):e) = if x==y then n else lookup x eapply :: Value -> M Value -> M Valueapply (Fun h) m = h mapply f m = unitM WrongFigure 2: Interpretation in a monad (call-by-name)abstraction looks the same but has changed subtly: previously variables were bound tovalues, now they are bound to computations. (Hence a small change in lookup: a call tounitM has vanished.) The code for application does change: now the function is evaluatedbut not the argument.The new interpreter can be modi�ed in the same way as the old one.If modi�ed for execution counts as in Section 2.5, the cost of an argument iscounted each time it is evaluated. Hence evaluating test term0 now returns the string"Value: 42; Count: 4", because the cost of adding 10 to 11 is counted twice. (Comparethis with a count of 3 for the call-by-value version.)If modi�ed for a non-deterministic language as in Section 2.7, then a term may returna di�erent value each time it is evaluated. For example, applying test to(App (Lam "x" (Add (Var "x") (Var "x"))) (Amb (Con 1) (Con 2)))now returns "[2,3,3,4]". (Compare this with "[2,4]" for the call-by-value version).An advantage of the monadic style is that the types make clear where e�ects occur.Thus, one can distinguish call-by-value from call-by-name simply by examining the types.If one uses impure features in place of monads, the clues to behaviour are more obscure.12

2.10 Monad lawsFor (M,unitM,bindM) to qualify as a monad, the following laws must be satis�ed.Left unit: (unitM a) `bindM` k = k aRight unit: m `bindM` unitM = mAssociative: m `bindM` (\a -> (k a) `bindM` (\b -> h b))= (m `bindM` (\a -> k a)) `bindM` (\b -> h b)These laws guarantee that monadic composition, as discussed in Section 2.1, is associativeand has a left and right unit. It is easy to verify that the monads described in this paperdo satisfy these laws.To demonstrate the utility of these laws, consider the task of proving that(Add t (Add u v)) and (Add (Add t u) v)always return the same value.Simplify the left term:interp (Add t (Add u v)) e= interp t e `bindM` (\a ->interp (Add u v) e `bindM` (\y ->add a y))= interp t e `bindM` (\a ->(interp u e `bindM` (\b ->interp v e `bindM` (\c ->add b c))) `bindM` (\y ->add a y))= interp t e `bindM` (\a ->interp u e `bindM` (\b ->interp v e `bindM` (\c ->add b c `bindM` (\y ->add a y)))).The �rst two steps are simple unfolding; the third step is justi�ed by the associative law.Similarly, simplify the right term:interp (Add (Add t u) v) e= interp t e `bindM` (\a ->interp u e `bindM` (\b ->interp v e `bindM` (\c ->add a b `bindM` (\x ->add x c)))).Again, this is two unfold steps and a use of the associative law. It remains to prove that13

add a b `bindM` (\x -> add x c) = add b c `bindM` (\y -> add y a).This is done by case analysis. If a, b, c have the forms Num i, Num j, Num k then theresult is unitM (i+j+k), as follows from two uses of the left unit law and the associativityof addition; otherwise the result is Wrong, also by the left unit law.The above proof is trivial. Without the monad laws, it would be impossible.As another example, note that for each monad we can de�ne the following operations.mapM :: (a -> b) -> (M a -> M b)mapM f m = m `bindM` (\a -> unitM (f a))joinM :: M (M a) -> M ajoinM z = z `bindM` (\m -> m)For the list monad of Section 2.7, mapM is the familiar map function, and joinM concate-nates a list of lists. Using id for the identity function (id x = x), and (.) for functioncomposition ((f.g) x = f (g x)), one can then formulate a number of laws.mapM id = idmapM (f.g) = mapM f . mapM gmapM f . unitM = unitM . fmapM f . joinM = joinM . mapM (mapM f)joinM . unitM = idjoinM . mapM unitM = idjoinM . mapM joinM = joinM . joinMm `bindM` k = joinM (mapM k m)The proof of each is a simple consequence of the three monad laws.Often, monads are de�ned not in terms of unitM and bindM, but rather in terms ofunitM, jointM, and mapM [Mac71, LS86, Mog89a, Wad90]. The three monad laws arereplaced by the �rst seven of the eight laws above. If one de�nes bindM by the eighth law,then the three monad laws follow. Hence the two de�nitions are equivalent.As described in [Wad90], the list comprehension notation generalises to an arbitrarymonad. That paper gives the following translations:[t] = unitM t[t | x <- u] = mapM (\x -> t) u[t | x <- u, y <- v] = joinM (mapM (\x -> mapM (\y -> t) v) u)For the list monad, this yields the usual notion of list comprehension. In the notation ofthis paper, the translation may be expressed as follows.[t] = unitM t[t | x <- u] = u `bindM` (\x -> unitM t)[t | x <- u, y <- v] = u `bindM` (\x -> v `bindM` (\y -> unitM t))The notation on the right, if not a comprehension, is at least comprehensible. The equiv-alence of the two translations follows from the monad laws.14

3 Continuing monadsThe purpose of this section is to compare the monadic style advocated in Section 2 withcontinuation-passing style (CPS).Continuation-passing style was �rst developed for use with denotational semantics[Rey72, Plo75]. It provides �ne control over the execution order of a program, and hasbecome popular as an intermediate language for compilers [SS76, AJ89]. This paperstresses the modularity a�orded by CPS, and in this sense has similar goals to the workof Danvy and Filinski [DF90].3.1 CPS interpreterThe monad of continuations is de�ned as follows.type K a = (a -> Answer) -> AnswerunitK a = \c -> c am `bindK` k = \c -> m (\a -> k a c)In CPS, a value a (of type a) is represented by a function that takes a continuation c (oftype a -> Answer) and applies the continuation to the value, yielding the �nal result c a(of type Answer). Thus, unitK a yields the CPS representation of a. If m :: K a andk :: a -> K b, then m `bindK` k acts as follows: bind c to the current continuation,evaluate m, bind the result to a, and apply k to a with continuation c.Substituting monad K for monad M in the interpreter and simplifying yields an inter-preter written in CPS.interp :: Term -> Environment -> (Value -> Answer) -> Answerinterp (Var x) e = \c -> lookup x e cinterp (Con i) e = \c -> c (Num i)interp (Add u v) e = \c -> interp u e (\a ->interp v e (\b ->add a b c))interp (Lam x v) e = \c -> c (Fun (\a -> interp v ((x,a):e)))interp (App t u) e = \c -> interp t e (\f ->interp u e (\a ->apply f a c))The functions lookup, add, and apply now also take continuations. The line de�ning Addcan be read: Let c be the current continuation, evaluate u, bind a to the result, evaluatev, bind b to the result, and add a to b with continuation c.This reading is closely related to the monadic reading given in Section 2.1, and indeedthe CPS and monadic versions are quite similar: the CPS version can be derived from themonadic one by simply eliding each occurrence of `bindM ,̀ and adding bits to the frontand end to capture and pass on the continuation c. The second argument to `bindM` has15

type a -> (b -> Answer) -> Answer; this is what k ranges over. A continuation hastype b -> Answer; this is what c ranges over. Both k and c serve similar roles, acting ascontinuations at di�erent levels.The Answer type may be any type rich enough to represent the �nal result of acomputation. One choice is to take an answer to be a value.type Answer = ValueThis determines the de�nition of showK.showK m = showval (m id)Here m :: K Value is passed the identity function id :: Value -> Value as a contin-uation, and the resulting Value is converted to a string. Evaluating test term0 returns"42", as before.Other choices for the Answer type will be considered in Section 3.33.2 Call with current continuationHaving converted our interpreter to CPS, it is now straightforward to add the call withcurrent continuation (callcc) operation, found in Scheme [RC86] and Standard ML of NewJersey [DHM91].The following operation captures the current continuation and passes it into the currentexpression.callccK :: ((a -> K b) -> K a) -> K acallccK h = \c -> let k a = \d -> c a in h k cThe argument to callccK is a function h, which is passed a function k of type (a -> K b).If k is called with argument a, it ignores its continuation d and passes a to the capturedcontinuation c instead.To add callcc to the interpreted language, add an appropriate term and a new case tothe interpreter.data Term = ... | Callcc Name Terminterp (Callcc x v) e = callccK (\k -> interp v ((x, Fun k):e))This uses callccK to capture the current continuation k, and evaluates v with x boundto a function that acts as k.For example, applying test to(Add (Con 1) (Callcc "k" (Add (Con 2) (App (Var "k") (Con 4)))))returns "5". 16

3.3 Monads and CPSWe have seen that by choosing a suitable monad, the monad interpreter becomes a CPSinterpreter. A converse property is also true: by choosing a suitable space of answers, aCPS interpreter can act as a monad interpreter.The general trick is as follows. To achieve the e�ects of a monad M in CPS, rede�nethe answer type to include an application of M.type Answer = M ValueThe de�nition of showK is modi�ed accordingly.showK n = showM (n unitM)Here n :: K Value is passed unitM :: Value -> M Value as a continuation, and theresulting M Value is converted to a string by showM.Just as unitM converts a value of type a into type M a, values of type M a can beconverted into type K a as follows.promoteK :: M a -> K apromoteK m = \c -> m `bindM` cSince m :: M a and c :: a -> M Value, the type of m `bindM` c is M Value, as re-quired.For example, to incorporate error messages, take M to be the monad E de�ned inSection 2.3. We then calculate as follows:errorK :: String -> (a -> E Value) -> E ValueerrorK s = promoteK (errorE s)= \c -> (errorE s) `bindE` c= \c -> Error s `bindE` c= \c -> Error sThe equalities follow by applying the de�nitions of promoteK, errorE, and bindE, respec-tively. We can take the last line as the de�nition of errorK. As we would expect, thissimply ignores the continuation and returns the error as the �nal result.The last section stressed that monads support modularity. For example, modifyingthe monadic interpreter to handle errors requires few changes: one only has to substitutemonad E for monad M and introduce calls to errorE at appropriate places. CPS supportsmodularity in a similar way. For example, modifying the CPS interpreter to handle errorsis equally simple: one only has to change the de�nitions of Answer and test, and introducecalls to errorK at appropriate places.Execution counts (as in Section 2.5) and output (as in Section 2.6) may be incorporatedinto continuation-passing style similarly. For execution counts, take Answer = S Valueand calculate a continuation version of tickS.17

tickK :: (() -> S Value) -> S ValuetickK = promoteK tickS= \c -> tickS `bindS` c= \c -> (\s -> ((), s+1)) `bindS` c= \c -> \s -> c () (s+1)For output, take Answer = O Value and calculate a continuation version of outO.outK :: Value -> (Value -> O Value) -> O ValueoutK a = promoteK (outO a)= \c -> (outO a) `bindO` c= \c -> (showval a ++ "; ", ()) `bindO` c= \c -> let (s,b) = c () in (showval a ++ "; " ++ s, b)In both cases, the modi�cations to the CPS version of the interpreter are as simple asthose to the monadic version.3.4 Monads vs. CPSGiven the results of the previous section, one may wonder whether there is any realdi�erence between monads and CPS. With monads, one writesm `bindM` (\a -> k a)and with CPS one writes(\c -> m (\a -> k a c))and the choice between these seems little more than a matter of taste.There is a di�erence. Each of the monad types we have described may be turned intoan abstract data type, and that provides somewhat �ner control than CPS. For instance,we have seen that the CPS analogue of the monad type S a is the type(a -> S Value) -> S Value.This latter type contains values such as\c -> \s -> (Wrong, c).This provides an error escape: it ignores the current continuation and always returnsWrong. The state monad S provides no such escape facility. With monads, one can choosewhether or not to provide an escape facility; CPS provides no such choice.We can recover this facility for CPS by turning continuations into an abstract datatype, and providing unitK and bindK as operations, but not providing callccK. So CPScan provide the same �ne control as monads { if CPS is expressed as a monad!Perhaps a more signi�cant di�erence between monads and CPS is the change of view-point. Monads focus attention on the question of exactly what abstract operations arerequired, what laws they satisfy, and how one can combine the features represented bydi�erent monads. 18

4 Experiencing monadsEach phase of the Haskell compiler is associated with a monad.The type inference phase uses a monad with an error component (similar to E inSection 2.3), a position component (similar to P in Section 2.4), and two state components(similar to S in Section 2.5). The state components are a name supply, used to generateunique new variable names, and a current substitution, used for uni�cation.The simpli�cation phase uses a monad with a single single state component, which isagain a name supply.The code generator phase uses a monad with three state components: a list of thecode generated so far, a table associating variable names with addressing modes, and asecond table that caches what is known about the state of the stack at execution time.In each case, the use of a monad greatly simpli�es bookkeeping. The type inferencerwould be extremely cluttered if it was necessary to mention explicitly at each step howthe current substitution, name supply, and error information are propagated; for a hintof the problems, see [Han87]. The monads used have been altered several times withoutdi�culty. The change to the interpreter described in Section 2.4 was based on a similarchange made to the compiler.The compiler has just begun to generate code, and a full assesment lies in the future.Our early experience supports the claim that monads enhance modularity.5 Conclusion5.1 The futureThis work raises a number of questions for the future.What are the limits of this technique? It would be desirable to characterise what sortof language features can be captured by monads, and what sort cannot. Call-by-valueand call-by-name translations of lambda calculus into a monad are well known; it remainsan open question whether there might be a call-by-need translation that evaluates eachargument at most once.Is syntactic support desirable? The technique given here, while workable, has a certainsyntactic clumsiness. It may be better to provide an alternative syntax. One possibilityis to provideletM a <- m in k aas alternative syntax for m `bindM` (\a -> k a). Another possiblity arises from monadcomprehensions [Wad90].What about e�ciency? The style advocated here makes heavy use of data abstractionand higher-order functions. It remains to be seen what impact this has on e�ciency, andthe GRASP team looks forward to examining the performance of our completed Haskellcompiler. We are hopeful, since we have placed high priority on making the relevantfeatures inexpensive. 19

How does one combine monads? The monads used in the Haskell compiler involve acombination of features; for instance, the type inferencer combines state and exceptions.There is no general technique for combining two arbitrary monads. However, Section 3.3shows how to combine continuations with any other monad; and similar techniques areavailable for the state, exception, and output monads [Mog89a, Mog89b]. One mightform a library of standard monads with standard ways of combining them. This wouldbe aided by parameterised modules, which are present in Miranda and Standard ML, butabsent in Haskell.Should certain monads be provided as primitive? Monads may encapsulate impuree�ects in a pure way. For example, when the state is an array, the state monad cansafely update the array by overwriting, as described in [Wad90]. Kevin Hammond andI have built an interface that allows Haskell programs to call C routines, using monadsto sequence the calls and preserve referential transparency. The e�ect is similar to the\abstract continuations" used in Hope+C [Per87].How do monads compare to other approaches to state? Several new approaches tostate in pure functional languages have emerged recently, based on various type disciplines[GH90, SRI91, Wad91]. These need to be compared with each other and with the monadapproach.Can type inference help? By examining where monads appear in the types of a pro-gram, one determines in e�ect where impure features are used. In this sense, the useof monads is similar to the use of e�ect systems as advocated by Gi�ord, Jouvelot, andothers, in which a type system infers where e�ects occur [GL86, JG91]. An intriguingquestion is whether a similar form of type inference could apply to a language based onmonads.5.2 The pastFinally, something should be said about the origin of these ideas.The notion of monad comes from category theory [Mac71, LS86]. It �rst arose inthe area of homological algebra, but later was recognised (due to the work of Kleisliand of Eilenberg and Moore) to have much wider applications. Its importance emergedslowly: in early days, it was not even given a proper name, but called simply a \standardconstruction" or a \triple". The formulation used here is due to Kleisli.Eugenio Moggi proposed that monads provide a useful structuring tool for denotationalsemantics [Mog89a, Mog89b]. He showed how lambda calculus could be given call-by-valueand call-by-name semantics in an arbitrary monad, and how monads could encapsulatea wide variety of programming language features such as state, exception handling, andcontinuations.Independent of Moggi, but at about the same time, Michael Spivey proposed thatmonads provide a useful structuring tool for exception handling in pure functional lan-guages, and demonstrated this thesis with an elegant program for term rewriting [Spi90].He showed how monads could treat exceptions (as in Section 2.3) and non-deterministicchoice (as in Section 2.7) in a common framework, thus capturing precisely a notion that20

I had groped towards years earlier [Wad85].Inspired byMoggi and Spivey, I proposed monads as a general technique for structuringfunctional programs. My early proposals were based on a special syntax for monads, thatgeneralised list comprehensions [Wad90]. This was unfortunate, in that it led many tothink a special syntax was needed. This new presentation is designed to convey thatmonads can be pro�tably applied to structure programs today with existing languages.A key observation of Moggi's was that values and computations should be assigneddi�erent types: the value type a is distinct from the computation type M a. In a call-by-value language, functions take values into computations (as in a -> M b); in a call-by-name language, functions take computations into computations (as in M a -> M b).John Reynolds made exactly the same point a decade ago [Rey81]. The essence ofAlgol, according to Reynolds, is a programming language that distinguishes data typesfrom phrase types. In his work data types (such as int) play the roles of values, and phrasetypes (such as int exp) play the role of computations, and the same distinction betweencall-by-value and call-by-name appears. These ideas form the basis for the design ofForsythe [Rey89a]. But the vital unitM and bindM operations do not appear in Reynolds'work.This is not the only time that John Reynolds has been a decade ahead of the rest ofus. Among other things, he was an early promoter of continuation-passing style [Rey72]and the �rst to apply category theory to language design [Rey80, Rey81]. One intriguingaspect of his recent work is the use of intersection types [Rey89a, Rey89b, Rey91], soperhaps we should expect an upsurge of interest in that topic early in the next millenium.This paper demonstrates that monads provide a helpful structuring technique forfunctional programs, and that the essence of impure features can be captured by the useof monads in a pure functional language.In Reynolds' sense of the word, the essence of Standard ML is Haskell.Acknowledgements. The work on the Haskell compiler reported here is a joint e�ort ofthe GRASP team, whose other members are Cordy Hall, Kevin Hammond, Will Partain,and Simon Peyton Jones. For helpful comments on this work, I'm grateful to DonaldBrady, Geo�rey Burn, Stephen Eldridge, John Hughes, David King, John Launchbury,Mu�y Thomas, and David Watt.References[AJ89] A. Appel and T. Jim, Continuation-passing, closure-passing style. In 16'thSymposium on Principles of Programming Languages, Austin, Texas; ACM,January 1989.[BW87] R. Bird and P. Wadler, Introduction to Functional Programming. Prentice Hall,1987.[DF90] O. Danvy and A. Filinski, Abstracting control. In Conference on Lisp andFunctional Programming, Nice, France; ACM, June 1990.21

[DHM91] B. Duba, R. Harper, and D. MacQueen, Typing �rst-class continuations inML. In 18'th Symposium on Principles of Programming Languages, Orlando,Florida; ACM, January 1991.[GH90] J. Guzm�an and P. Hudak, Single-threaded polymorphic lambda calculus. InSymposium on Logic in Computer Science, Philadelphia, Pennsylvania; IEEE,June 1990.[GL86] D. K. Gi�ord and J. M. Lucassen, Integrating functional and imperative pro-gramming. In Conference on Lisp and Functional Programming, 28{39, Cam-bridge, Massachusetts; ACM, August 1986.[Han87] P. Hancock, A type checker. Chapter 9 of Simon Peyton Jones, The Implemen-tation of Functional Programming Languages, Prentice Hall, 1987.[HPW91] P. Hudak, S. Peyton Jones and P. Wadler, editors, Report on the ProgrammingLanguage Haskell: Version 1.1. Technical report, Yale University and GlasgowUniversity, August 1991.[JG91] P. Jouvelot and D. Gi�ord, Algebraic reconstruction of types and e�ects. In18'th ACM Symposium on Principles of Programming Languages, Orlando,Florida, January 1991.[LS86] J. Lambek and P. Scott, Introduction to Higher Order Categorical Logic, Cam-bridge University Press, 1986.[Mac71] S. Mac Lane, Categories for the Working Mathematician, Springer-Verlag,1971.[Mog89a] E. Moggi, Computational lambda-calculus and monads. In Symposium on Logicin Computer Science, Asilomar, California; IEEE, June 1989. (A longer versionis available as a technical report from the University of Edinburgh.)[Mog89b] E. Moggi, An abstract view of programming languges. Course notes, Universityof Edinburgh.[MTH90] R. Milner, M. Tofte, and R. Harper, The de�nition of Standard ML. MIT Press,1990.[Pau91] L. C. Paulson, ML for the Working Programmer. Cambridge University Press,1991.[Per87] N. Perry, Hope+C, a continuation extension for Hope+. Imperial College, De-partment of Computing, Technical report IC/FPR/LANG/2.5.1/21, November1987.[Plo75] G. Plotkin, Call-by-name, call-by-value, and the �-calculus. Theoretical Com-puter Science, 1:125{159, 1975. 22

[RC86] J. Rees and W. Clinger (eds.), The revised3 report on the algorithmic languageScheme. ACM SIGPLAN Notices, 21(12):37{79, 1986.[Rey72] J. Reynolds, De�nitional interpreters for higher-order programming languages.In 25'th ACM National Conference, 717{740, 1972.[Rey80] J. Reynolds, Using category theory to design implicit conversion and genericoperators. In N. Jones, editor, Semantics-Directed Compiler Generation, 211{258, Berlin; LNCS 94, Springer-Verlag, 1980.[Rey81] J. Reynolds, The essence of Algol. In de Bakker and van Vliet, editors, Algo-rithmic Languages, 345{372, North Holland, 1981.[Rey89a] J. Reynolds, Preliminary design of the programming language Forsythe.Carnegie Mellon University technical report CMU-CS-88-159, June 1988.[Rey89b] J. C. Reynolds, Syntactic control of interference, part II. In International Col-loquium on Automata, Languages, and Programming, 1989.[Rey91] J. Reynolds, The coherrence of languages with intersection types. In Interna-tional Conference on Theoretical Aspects of Computer Software, Sendai, Japan,LNCS, Springer Verlag, September 1991.[Spi90] M. Spivey, A functional theory of exceptions. Science of Computer Program-ming, 14(1):25{42, June 1990.[SRI91] V. Swarup, U. S. Reddy, and E. Ireland, Assignments for applicative languages.In Conference on Functional Programming Languages and Computer Architec-ture, Cambridge, Massachusetts; LNCS 523, Springer Verlag, August 1991.[SS76] G. L. Steele, Jr. and G. Sussman, Lambda, the ultimate imperative. MIT, AIMemo 353, March 1976.[Tur90] D. A. Turner, An overview of Miranda. In D. A. Turner, editor, Research Topicsin Functional Programming. Addison Wesley, 1990.[Wad85] P. Wadler, How to replace failure by a list of successes. Conference on Func-tional Programming Languages and Computer Architecture, Nancy, France;LNCS 201, Springer-Verlag, September 1985.[Wad90] P. Wadler, Comprehending monads. In Conference on Lisp and FunctionalProgramming, Nice, France; ACM, June 1990.[Wad91] Is there a use for linear logic? Conference on Partial Evaluation and Semantics-Based Program Manipulation (PEPM), New Haven, Connecticut; ACM, June1991. 23

