Functional
Programming

Overview: Monoid, Foldable, Traversable

Ravi Chugh

UChicago CS 223
Winter 2023

foldr (++) " ["223","00"] :: [Char]

foldr (+) 5 [2,2,3,0,0] ;0 Int
foldr (*) 1 [2,2,3,0,0] :: Int
foldr (||) False [True, True, False] :: Bool
foldr (&&) True [True, True, False] :: Bool

foldr firstJust Nothing [Nothing, Just 2, Just 23] :: Maybe Int
= Just 2

foldr lastJust Nothing [Nothing, Just 2, Just 23] :: Maybe Int
= Just 23

foldr plusJust Nothing [Nothing, Just 2, Just 23] :: Maybe Int
= Just 25

foldr multJust Nothing [Nothing, Just 2, Just 23] :: Maybe Int
= Just 46

[Char]

| Int
| Int

.| Bool
.| Bool
- :|Maybe
- :|Maybe

. :|Maybe

. .| Maybe

Int

Int

Int

Int

foldr |(++) . ["223","00"]

foldr |(+) 0 [2,2,3,0,0]

foldr |(*) 1 [2,2,3,0,0]

foldr |(|]) False |[True, True, False]

foldr | (&&) True [True, True, False]

foldr |[firstJustfNothing|[Nothing, Just 2, Just 23]
foldr |lastJust gNothing|[Nothing, Just 2, Just 23]
foldr |plusJust gNothing][Nothing, Just 2, Just 23]
foldr |multJust gNothing|[Nothing, Just 2, Just 23]

* Oneinstance per type,

Semigroup t

=> Monoid t

SO wrapper types

foldr (+) © ([2,2,3,0,0] i [] Int)
foldr (+) © (("CMSC", 223) :: (,) String Int)
foldr (+) © ((Right 223) :: Either a Int)

Foldable t

foldr
foldl
fold

elem
(concat

(a ->b ->b) ->b
(b ->a ->b) ->b

:: Monoid m =>
foldMap ::

Monoid m => (a -> m)

:: EQq a

=>a ->t a -> Bool
t [a] -> [a]

foldr|(+) © ([2,2,3,0,0]] Int)
foldr |(+) @ (("cmsc™, 223) :|(,) String]int)

foldr |(+) © ((Right 223) ::|Either a |Int)

-> t
-> t

-> t

Q=3 OV QL

s 3 O O

[Maybe a]

[]
[]

Tree

t outer (t_inner

Traversable t outer

(Maybe
(Tree
(Maybe

t _inner
t outer (t _inner
t _inner
t _inner

t _outer

* traverseis “effectful fmap”
* Traversable simultaneously generalizes Functor and Foldable

t _inner

Maybe [a]

Maybe |[{[] [3a)
Tree [] a)
Maybe |[{Tree| a)

t inner (t_outer a)

t _outer

t inner (t_outer

