
Functional
Programming

Ravi Chugh
UChicago CS 223

Winter 2023

The
Warming
Climate*
*An incomplete and unscientific account

FLAMING

FRIGID
"Imperative" Languages

"Functional" Languages

Dependently-Typed Proof Assistants

HOT

HOT

FLAMING

FRIGID

The
Warming
Climate*
*An incomplete and unscientific account

"Imperative" Languages

"Functional" Languages

Dependently-Typed Proof Assistants

HOT Programming in Haskell
Primary

Algebraic Datatypes

Higher-Order Functions

Separation of Church and State

Syntactic Concision

Lazy Evaluation

Higher Order Typed

TYPE SYSTEM

Alonzo Church
λ-calculus (1930s)

A Silly Little I/O Loop

Tell me a nice number: Haskell, woohoo!!!
Hmm, that doesn't seem like a number.
Tell me a nice number: CMSC 22300
Hmm, that doesn't seem like a number.
Tell me a nice number: cs223
Hmm, that doesn't seem like a number.
Tell me a nice number: 223
Yes, 223 is a nice number.
Tell me a nice number: -223
Yes, -223 is a nice number.
Tell me a nice number:

stdinstdout

v0
main :: IO ()
main =
do
putStr "Tell me a nice number: "
s <- getLine
let i = read s :: Int
putStrLn ("Yes, " ++ show i ++ " is a nice number.")
main

v0
main :: IO ()
main =
do
putStr "Tell me a nice number: "
s <- getLine
let i = read s :: Int
putStrLn ("Yes, " ++ show i ++ " is a nice number.")
main

main :: IO ()
main =
do
putStr "Tell me a nice number: "
s <- getLine
if all isDigit s then
let i = read s :: Int in
putStrLn ("Yes, " ++ show i ++ " is a nice number.")

else
putStrLn "Hmm, that doesn't seem like a number."

main

v1

main :: IO ()
main =
do
putStr "Tell me a nice number: "
s <- getLine
if all isDigit s then
let i = read s :: Int in
putStrLn ("Yes, " ++ show i ++ " is a nice number.")

else
putStrLn "Hmm, that doesn't seem like a number."

main

v1

main :: IO ()
main =
do
putStr "Tell me a nice number: "
s <- getLine
let i = readInt s
if i /= -9999999999999
then putStrLn ("Yes, " ++ show i ++ " is a nice number.")
else putStrLn "Hmm, that doesn't seem like a number."

main

readInt :: String -> Int
readInt s =
if all isDigit s then
read s

else
-9999999999999

v2

main :: IO ()
main =
do
putStr "Tell me a nice number: "
s <- getLine
let i = readInt s
if i /= -9999999999999
then putStrLn ("Yes, " ++ show i ++ " is a nice number.")
else putStrLn "Hmm, that doesn't seem like a number."

main

readInt :: String -> Int
readInt s =
if all isDigit s then
read s

else
-9999999999999

v2

main :: IO ()
main =
do
putStr "Tell me a nice number: "
s <- getLine
case readMaybeInt s of
Just i -> putStrLn ("Yes, " ++ show i ++ " is a nice number.")
Nothing -> putStrLn "Hmm, that doesn't seem like a number."

main

readMaybeInt :: String -> Maybe Int
readMaybeInt s =
if all isDigit s then
Just (read s)

else
Nothing

v3

Algebraic Datatypes (ADTs)
and Pattern Matching

main :: IO ()
main =
do
putStr "Tell me a nice number: "
s <- getLine
case readMaybeInt s of
Just i -> putStrLn ("Yes, " ++ show i ++ " is a nice number.")
Nothing -> putStrLn "Hmm, that doesn't seem like a number."

main

readMaybeInt :: String -> Maybe Int
readMaybeInt s =
if all isDigit s then
Just (read s)

else
Nothing

v3

main :: IO ()
main =
do
putStr "Tell me a nice number: "
s <- getLine
putStrLn (response s)
main

response :: String -> String
response s =
case readMaybeInt s of
Just i -> "Yes, " ++ show i ++ " is a nice number."
Nothing -> "Hmm, that doesn't seem like a number."

readMaybeInt :: String -> Maybe Int
readMaybeInt s =
if all isDigit s then
Just (read s)

else
Nothing

v4

main :: IO ()
main =
do
putStr "Tell me a nice number: "
s <- getLine
putStrLn (response s)
main

response :: String -> String
response s =
case readMaybeInt s of
Just i -> "Yes, " ++ show i ++ " is a nice number."
Nothing -> "Hmm, that doesn't seem like a number."

readMaybeInt :: String -> Maybe Int
readMaybeInt s =
if all isDigit s then
Just (read s)

else
Nothing

v4

main :: IO ()
main =
loop "Tell me a nice number: " response

loop :: String -> (String -> String) -> IO ()
loop prompt f =
do
putStr prompt
s <- getLine
putStrLn (f s)
loop prompt f

response :: String -> String
response s =
case readMaybeInt s of
Just i -> "Yes, " ++ show i ++ " is a nice number."
Nothing -> "Hmm, that doesn't seem like a number."

readMaybeInt :: String -> Maybe Int
readMaybeInt s =
if all isDigit s then
Just (read s)

else
Nothing

v5

Higher Order Functions

main :: IO ()
main =
loop "Tell me a nice number: " response

loop :: String -> (String -> String) -> IO ()
loop prompt f =
do
putStr prompt
s <- getLine
putStrLn (f s)
loop prompt f

response :: String -> String
response s =
case readMaybeInt s of
Just i -> "Yes, " ++ show i ++ " is a nice number."
Nothing -> "Hmm, that doesn't seem like a number."

readMaybeInt :: String -> Maybe Int
readMaybeInt s =
if all isDigit s then
Just (read s)

else
Nothing

v5

Pure Functions

Effectful Code

main :: IO ()
main =
loop "Tell me a nice number: " response

loop :: String -> (String -> String) -> IO ()
loop prompt f =
do
putStr prompt
s <- getLine
putStrLn (f s)
loop prompt f

response :: String -> String
response s =
case readMaybeInt s of
Just i -> "Yes, " ++ show i ++ " is a nice number."
Nothing -> "Hmm, that doesn't seem like a number."

readMaybeInt :: String -> Maybe Int
readMaybeInt s =
if all isDigit s then
Just (read s)

else
Nothing

v5

main :: IO ()
main =
loop "Tell me a nice number: " response

loop :: String -> (String -> String) -> IO ()
loop prompt f =
do
putStr prompt
s <- getLine
putStrLn (f s)
loop prompt f

response :: String -> String
response s =
case readMaybeInt s of
Just i -> "Yes, " ++ show i ++ " is a nice number."
Nothing -> "Hmm, that doesn't seem like a number."

readMaybeInt :: String -> Maybe Int
readMaybeInt "" = Nothing
readMaybeInt ('-':s) = case readMaybeInt s of

Just i -> Just (-1 * i)
Nothing -> Nothing

readMaybeInt s = if all isDigit s
then Just (read s)
else Nothing

v6

main :: IO ()
main =
loop "Tell me a nice number: " response

loop :: String -> (String -> String) -> IO ()
loop prompt f =
do
putStr prompt
s <- getLine
putStrLn (f s)
loop prompt f

response :: String -> String
response s =
case readMaybeInt s of
Just i -> "Yes, " ++ show i ++ " is a nice number."
Nothing -> "Hmm, that doesn't seem like a number."

readMaybeInt :: String -> Maybe Int
readMaybeInt "" = Nothing
readMaybeInt ('-':s) = case readMaybeInt s of

Just i -> Just (-1 * i)
Nothing -> Nothing

readMaybeInt s = if all isDigit s
then Just (read s)
else Nothing

v6

main :: IO ()
main =
loop "Tell me a nice number: " response

loop :: String -> (String -> String) -> IO ()
loop prompt f =
do
putStr prompt
s <- getLine
putStrLn (f s)
loop prompt f

response :: String -> String
response s =
case readMaybeInt s of
Just i -> "Yes, " ++ show i ++ " is a nice number."
Nothing -> "Hmm, that doesn't seem like a number."

readMaybeInt :: String -> Maybe Int
readMaybeInt "" = Nothing
readMaybeInt ('-':s) = do

i <- readMaybeInt s
return (-1 * i)

readMaybeInt s = do
guard (all isDigit s)
return (read s)

v7

“Programmable
Semicolons”

;
;

;
;

;
;
;
;

main :: IO ()
main =
loop "Tell me a nice number: " response

loop :: String -> (String -> String) -> IO ()
loop prompt f =
do
putStr prompt
s <- getLine
putStrLn (f s)
loop prompt f

response :: String -> String
response s =
case readMaybeInt s of
Just i -> "Yes, " ++ show i ++ " is a nice number."
Nothing -> "Hmm, that doesn't seem like a number."

readMaybeInt :: String -> Maybe Int
readMaybeInt "" = Nothing
readMaybeInt ('-':s) = do

i <- readMaybeInt s
return (-1 * i)

readMaybeInt s = do
guard (all isDigit s)
return (read s)

v7

main :: IO ()
main =
loop "Tell me a nice number: " response

loop :: String -> (String -> String) -> IO ()
loop prompt f =
do
putStr prompt
s <- getLine
putStrLn (f s)
loop prompt f

response :: String -> String
response s =
case readMaybeInt s of
Just i -> "Yes, " ++ show i ++ " is a nice number."
Nothing -> "Hmm, that doesn't seem like a number."

readMaybeInt :: String -> Maybe Int
readMaybeInt "" = Nothing
readMaybeInt ('-':s) = (\i -> -1 * i) <$> readMaybeInt s
readMaybeInt s = guard (all isDigit s) >> return (read s)

v8

main :: IO ()
main =
loop "Tell me a nice number: " response

loop :: String -> (String -> String) -> IO ()
loop prompt f =
do
putStr prompt
s <- getLine
putStrLn (f s)
loop prompt f

response :: String -> String
response s =
case readMaybeInt s of
Just i -> "Yes, " ++ show i ++ " is a nice number."
Nothing -> "Hmm, that doesn't seem like a number."

readMaybeInt :: String -> Maybe Int
readMaybeInt "" = Nothing
readMaybeInt ('-':s) = ((-1)*) <$> readMaybeInt s
readMaybeInt s = guard (all isDigit s) >> return (read s)

v9

Operator Overloading++

main :: IO ()
main =
loop "Tell me a nice number: " response

loop :: String -> (String -> String) -> IO ()
loop prompt f =
do
putStr prompt
s <- getLine
putStrLn (f s)
loop prompt f

response :: String -> String
response s =
case readMaybeInt s of
Just i -> "Yes, " ++ show i ++ " is a nice number."
Nothing -> "Hmm, that doesn't seem like a number."

readMaybeInt :: String -> Maybe Int
readMaybeInt "" = Nothing
readMaybeInt ('-':s) = ((-1)*) <$> readMaybeInt s
readMaybeInt s = guard (all isDigit s) >> return (read s)

v9

main :: IO ()
main =
loop "Tell me a nice number: " response

loop :: String -> (String -> String) -> IO ()
loop prompt f =
do
putStr prompt
putStrLn =<< f <$> getLine
loop prompt f

response :: String -> String
response s =
case readMaybeInt s of
Just i -> "Yes, " ++ show i ++ " is a nice number."
Nothing -> "Hmm, that doesn't seem like a number."

readMaybeInt :: String -> Maybe Int
readMaybeInt "" = Nothing
readMaybeInt ('-':s) = ((-1)*) <$> readMaybeInt s
readMaybeInt s = guard (all isDigit s) >> return (read s)

v10

main :: IO ()
main =
loop "Tell me a nice number: " response

loop :: String -> (String -> String) -> IO ()
loop prompt f =
do
putStr prompt
putStrLn =<< f <$> getLine
loop prompt f

response :: String -> String
response s =
case readMaybeInt s of
Just i -> "Yes, " ++ show i ++ " is a nice number."
Nothing -> "Hmm, that doesn't seem like a number."

readMaybeInt :: String -> Maybe Int
readMaybeInt "" = Nothing
readMaybeInt ('-':s) = ((-1)*) <$> readMaybeInt s
readMaybeInt s = guard (all isDigit s) >> return (read s)

v10

import Data.Char
import Control.Monad

main :: IO ()
main =
loop "Tell me a nice number: " response

loop :: String -> (String -> String) -> IO ()
loop prompt f =
do
putStr prompt
putStrLn =<< f <$> getLine
loop prompt f

response :: String -> String
response s =
case readMaybeInt s of
Just i -> "Yes, " ++ show i ++ " is a nice number."
Nothing -> "Hmm, that doesn't seem like a number."

readMaybeInt :: String -> Maybe Int
readMaybeInt "" = Nothing
readMaybeInt ('-':s) = ((-1)*) <$> readMaybeInt s
readMaybeInt s = guard (all isDigit s) >> return (read s)

v10

Primary Big Ideas

Algebraic Datatypes

Higher-Order Functions

Separation of Church and State

Secondary

Syntactic Concision
(double-edged sword)

Lazy Evaluation
(ditto)

HOT Programming in Haskell
Higher Order Typed

Separation of Church and State

Separation of Church and State

-Every Functional Programmer, Always

Functional Program.

Disclaimer: This is not an authentic quote from Phil Wadler
https://www.google.com/search?q=phil+wadler+lambda&tbm=isch

https://twitter.com/jeanqasaur/status/1201412242119356416

https://www.google.com/search?q=phil+wadler+lambda&tbm=isch
https://twitter.com/jeanqasaur/status/1201412242119356416

https://www.keepcalmandposters.com/poster/1359123_keep_calm_and_do_haskell
https://www.keepcalmandposters.com/poster/5812159_keep_calm_and_learn_haskell

https://www.zazzle.com/keep_calm_and_curry_on_poster-228123322001929170

https://www.keepcalmandposters.com/poster/1359123_keep_calm_and_do_haskell
https://www.keepcalmandposters.com/poster/5812159_keep_calm_and_learn_haskell
https://www.zazzle.com/keep_calm_and_curry_on_poster-228123322001929170

