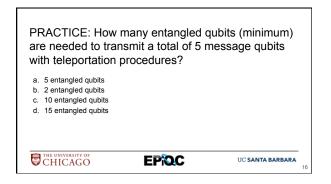
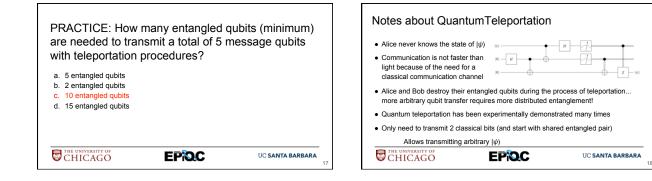
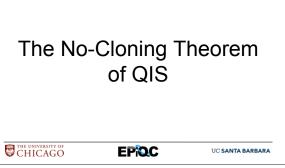


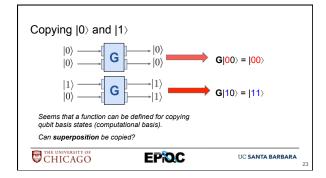
We de	6: Process educe information τε Before Measurement 1)(α/0)+β/1))+ 01)(α/ (1)-β/0))]	about Bob's	s state by usi		asurements		
	Alice's Measurement	00	01	10	11		
	Value of Bob's qubit	$\alpha 0\rangle + \beta 1\rangle$	$\alpha 1\rangle + \beta 0\rangle$	$\alpha 0\rangle$ - $\beta 1\rangle$	$\alpha 1\rangle - \beta 0\rangle$	1	
Remem	Remember: Goal is to transmit $ \Psi = \alpha 0\rangle + \beta 1\rangle$ If measurement result is 00, already done For each other result 01, 10, or 11, need to apply particular correction						
C	e university of HICAGO		EPiQC		UC SANTA BA	RBARA 1	

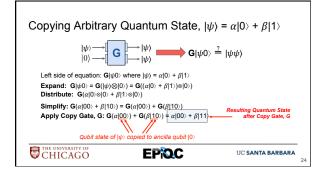


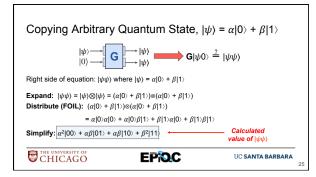

Step 8: B To recover ↓ • if b₁ is 1, t • if b₀ is 1, t): hen apply a	Z gate	, 1	+ β 1>	Correction Gates:
Alice's Measurement b ₁ b ₀	00	01	10	11	
Value of Bob's qubit	$\alpha 0\rangle + \beta 1\rangle$	$\alpha 1\rangle + \beta 0\rangle$	$\alpha 0\rangle - \beta 1\rangle$	$\alpha 1\rangle - \beta 0\rangle$	
	/				
	o Gates eeded!	Apply NOT Gate	Apply Z Gate	Apply NOT and Z	
CHIC.	rsity of AGO		EPiQ	C	UC SANTA BARBARA 12


PRACTICE:	Alice's Measurement b ₁ b ₀	00	01	10	11	
	Value of Bob's qubit	$\alpha 0\rangle + \beta 1\rangle$	$\alpha 1\rangle + \beta 0\rangle$	$\alpha 0\rangle$ - $\beta 1\rangle$	$\alpha 1\rangle$ - $\beta 0\rangle$	
$\begin{array}{l} \mbox{During teleportation, Alice m message qubit from Alice we the qubit currently in Bob's p \\ a. 0.8 0\rangle + 0.6 1\rangle \\ b. 0.8 0\rangle - 0.6 1\rangle \\ c. 0.8 1\rangle + 0.6 0\rangle \\ d. 0.8 1\rangle - 0.6 0\rangle \end{array}$	as intended to hav	e a value of	$ \psi\rangle$ = 0.8 $ 0\rangle$ +			f
CHICAGO	E	PiQC		UC SAN	TA BARBARA	- 14

PRACTICE:	Alice's Measurement b ₁ b ₀	00	01	10	11	
	Value of Bob's qubit	$\alpha 0\rangle + \beta 1\rangle$	$\alpha 1\rangle + \beta 0\rangle$	$\alpha 0\rangle$ - $\beta 1\rangle$	$\alpha 1\rangle - \beta 0\rangle$	
$\begin{array}{l} \text{During teleportation, Alice we message qubit from Alice we the qubit currently in Bob's p \\ \textbf{a}. 0.8[0) + 0.6[1) \\ \textbf{b}. 0.8[0) - 0.6[1) \\ \textbf{c}. 0.8[1) + 0.6[0) \\ \textbf{d}. 0.8[1) - 0.6[0) \end{array}$	intended to have	e a value of	$ \psi\rangle$ = 0.8 $ 0\rangle$ +			ſ
THE UNIVERSITY OF CHICAGO	E	PiQC		UC SAN	TA BARBARA	- 15

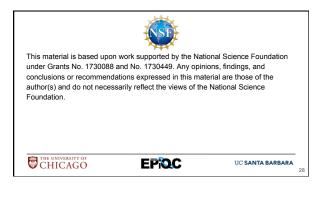



uantum teleportation can be used in rojected applications include:	n many future quantum computing tas	sks!	l Th
Reducing computation errors Noise-resistant quantum gates			
 Error correcting codes 			
 Uniting quantum computers to form Constructing ultra-secure commun Qubits are transferred with ultimat 		ges	



Copying Information	
Classical computing relies on copying inform	nation for:
Computation	
 Data storage 	
 Error detection and correction 	
Examples of copying classical data includ my_var = 1 copy_my_var = my_var print("Original: (my_var), Copy:(copy_my_var)')	101011 input output₀= input 101011
Original: 1, Copy:1	output ₁ = input
Assigning a new variable the value of an existing variable in Python	Sending one signal down multiple wires with voltage fan-out in a classical circuit

"Cloning" a qubit Can qubit state be cloned or duplicated? Let's attempt to define a "qubit copying" circuit, G : $\begin{array}{c} Arbitrary state \\ to be copied: \\ \Psi\rangle = \alpha 0\rangle + \beta 1\rangle \\ \hline Ancilla qubit to for \\ duplicate state \end{array} \qquad 0 \\ \end{array} \qquad \qquad$	$ \Psi angle$ Two copies of $ \Psi angle$ leave G
CHICAGO EPOC	UC SANTA BARBARA 22



Copying Arbitrary Quantum State, $ \psi\rangle = \alpha 0\rangle + \beta 1\rangle$	
$ \begin{array}{c} \psi\rangle \longrightarrow \left[\begin{array}{c} \mathbf{G} \end{array} \right] \longrightarrow \left \psi\rangle \\ 0\rangle \longrightarrow \left[\begin{array}{c} \mathbf{G} \end{array} \right] \longrightarrow \left \psi\rangle \end{array} \end{array} \right] \begin{array}{c} \mathbf{G} \psi0\rangle \neq \left \psi\psi\rangle \end{array} $	
Anticipated output after state copy Output produced by copy gate, G $\alpha^{2} 00\rangle + \alpha\beta 01\rangle + \alpha\beta 10\rangle + \beta^{2} 11\rangle$	
There is no copy (clone) gate that can duplicate qubit state!	
THE UNIVERSITY OF EPROC UC SANTA BARBARA	26

Takeaway: The No-Cloning Theorem	
 Qubits cannot be duplicatedwe call this the No Cannot 'see' quantum state without destroying itl Simila The No-cloning Theorem has major implications storage of quantum information Major differences will exist for quantum versions Algorithms Error correction and detection Memory 	r to measurement on the use and
We must rethink how to solve problems as compared t if we want to use the unique properties of QIS such	
CHICAGO EPOC	UC SANTA BARBARA

