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Last Time:
Quantum Teleportation
No-Cloning Theorem

Today:
Superdense Coding
Entangled states on more than 2 qubits
Start talking about Shor’s factoring algorithm (Motivation: Break RSA Encryption)
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Recall: Entangled Systems
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Above example is maximally entangled 2-qubit state (EPR pair)

Action on one part of the system impacts other(s).

| ⟩𝚽! = "
#
| ⟩&& !| ⟩""

2

Recall: Quantum Teleportation 
Protocol to efficiently transmit quantum information with a classical channel
Alice can convey 1 qubit message ⟩Ψ = 𝛼 ⟩0 +𝛽| ⟩1 to Bob using only

2 (classical) bits 
1 shared EPR pair | ⟩𝚽! = !

"
| ⟩$$ !| ⟩%%
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Alice Bob

| ⟩Ψ and half of | ⟩𝚽# Other half of | ⟩𝚽#| ⟩Ψ

2 bits 

Destroys EPR pair and Alice’s copy of | ⟩Ψ
No-Cloning Thm: Impossible to copy | ⟩Ψ
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Superdense Codes
Protocol to efficiently transmit classical information with a quantum channel
Alice can convey 2-bit message 𝑏!𝑏" to Bob using only

1 qubit
1 shared EPR pair | ⟩𝚽# = '

(
| ⟩"" #| ⟩!!
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Alice Bob

𝑏"𝑏& and half of | ⟩𝚽! Other half of | ⟩𝚽!𝑏"𝑏&

1 qubit

Destroys EPR pair but does not destroy Alice’s copy of 𝑏"𝑏&
Can copy classical bits (trivially)
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Superdense codes: opposite of quantum teleportation
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Alice Bob
QUANTUM CHANNEL

b1b0 b1b0

SUPERDENSE CODES
Transmit 2 bits
using 1 qubit

and shared EPR pair

Classical CHANNEL

QUANTUM TELEPORTATION
Transmits 1 qubit 

using 2 bits
and shared EPR pair

Alice Bob

| ⟩Ψ | ⟩Ψ
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Step 1: Create EPR Pair
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Step 2: Distribute EPR to Alice & Bob 
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Also has message
b1b0

Alice

Bob

TWO
QUBIT  
STATE 

| ⟩𝚽# = $
%
| ⟩(( #| ⟩$$

7

Step 3: Alice performs operations on her half of EPR pair
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Double lines 
indicate 
classical 

information!

Operation depends on value b1b0
If 𝑏" = 1, then apply X gate
If 𝑏! = 1, then apply Z gate

b1

Bob

Alice
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Current State (explicitly)
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Classical Message
b1b0 00 01 10 11

Gates to Apply None NOT (X) Z NOT (X) and Z

Resulting
State:

Alice

Bob

b0 b1
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Step 4: Alice sends her qubit to Bob, Bob ‘inverts’ entanglement
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b1

Bob

Alice
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Bob

Key idea: current quantum state = classical message
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Current quantum state = classical message 
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Classical
Message b1b0= 00 b1b0= 01 b1b0= 10 b1b0= 11

Entangled 
State

State after 
CNOT

State after 
H |00⟩ |01⟩ |10⟩ |11⟩

Bob

Alice
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Step 5: Bob measures his qubits and learns message
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b1

Bob

Alice

| ⟩𝚽! = "
#
| ⟩&& !| ⟩""

b0

Bob

b1

b0
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Full Quantum Circuit for Superdense Codes 
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b0

b1

Alice

Bob

b1

b0
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PRACTICE:
How many entangled qubit pairs would be needed to transmit 32 bits of classical 
information?

A. 32 pairs
B. 16 pairs
C. 8 pairs
D. 4 pairs
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PRACTICE:

How many entangled qubit pairs would be needed to transmit 32 bits of classical 
information?

A. 32 pairs
B. 16 pairs
C. 8 pairs
D. 4 pairs
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Superdense Codes : Summary
Increased bandwidth (2 bits/qubit)

Some ‘work” completed in advance when EPR pair is divided between Alice and Bob

Numerous successful experimental demonstrations of protocol (sort of)
Quantum channels not robust enough to actually outperform transmitting (directly) the 2 bits
May never be robust enough

Malicious party cannot learn message
Eavesdropping (measurement) during transmission destroys entanglement

Malicious party can scramble message
Apply extra gates during transmission 
Message received by Bob is not what Alice tried to send

16
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Multipartite Entanglement
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Extending Entanglement To More Than 2 Qubits
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Two-qubit 
entanglement

Three-qubit 
entanglement

Creating n-qubit entangled states is possible with an H gate and (n-1) CNOT gates.
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GHZ (Greenberger–Horne–Zeilinger) 

GHZ is a circuit that defines how to entangle n qubits, not just 2 qubits

Entanglement shared among several parties used in:
● Communication protocols (Distributed Quantum Computing/Networks)
● Cryptographic applications (quantum secret sharing)
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Equivalent GHZ Circuits
Can we entangle four qubits with both circuits?
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So far, circuits are the same.

Visual Qubit 
Representation:

Initial State State After Hadamard
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https://arxiv.org/abs/quant-ph/9806063


2/17/22

6

Equivalent GHZ Circuits
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Circuits are still the same.

Visual Qubit 
Representation:
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Equivalent GHZ Circuits
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Circuits are still the same, even though CNOT control placement differs!

Visual Qubit 
Representation:
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Equivalent GHZ Circuits
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Circuits both created four-qubit entanglement! They are equivalent despite using different control 
qubits!

Visual Qubit 
Representation:
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Alternative GHZ Circuit Structures (Generalized) 

Both circuits entangle multiple qubits, but the right 
circuit may be easier for physical realization if qubit-
qubit connections are limited!
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n qubits

n qubitsn qubits

IBM Toronto

Example 
Device:

24



2/17/22

7

Example: Apply NOT Gate after Generation of 3-Qubit GHZ

25

● Resulting state is still maximally entangled. 
● It is an extension of ‘opposite entangle’ state. 
● Measurement of one qubit gives information about the remaining two!

What happens to the entangled state?
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PRACTICE: What is the output state for the following 
circuit?

A.

B.

C.

D.
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PRACTICE: What is the output state for the following 
circuit?

A.

B.

C.

D.
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Shor’s Algorithm (Motivation)
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Securing Information with RSA Encryption

Makes data appear completely random unless viewed by intended recipient
If encryption key factors are unknown, data cannot be decrypted without 
significant time or computer resources
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Securing Information with RSA Encryption
Relies on the difficulty of factoring the product of two large prime numbers

Multiplying is easy, but factoring seems very hard!
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What if prime factorization was easier?
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Quantum Factoring with Shor’s Algorithm 
Developed in 1994 by Peter Shor 

● “Algorithms for quantum computation: discrete logarithms and factoring” 
● “Polynomial-Time Algorithms for Prime Factorization and Discrete 

Logarithms on a Quantum Computer”

First demonstration of significant quantum speedup for a 
practical application

Exponential speedup compared to classical techniques!
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This material is based upon work supported by the National Science Foundation 
under Grants No. 1730088 and No. 1730449. Any opinions, findings, and 
conclusions or recommendations expressed in this material are those of the 
author(s) and do not necessarily reflect the views of the National Science 
Foundation.
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https://ieeexplore.ieee.org/document/365700
https://arxiv.org/abs/quant-ph/9508027

