Qubits: Mathematical Notation

Outline

Bra-ket Notation

Vector Notation

Single-Qubit Calculations (matrix multiplication)

Multi-Qubit Calculations (single - double qubit notation)

Decomposing the Classical Computer

Everything is stored as a number in a variable:

- Each *letter* of this sentence (s is 115, S is 83)
- The color of the font of this sentence
- The number of slides in this presentation
- The images included in this presentation (lots and lots of numbers)
- Sounds from an audio file

Decomposing the Classical Computer

Every number is stored in binary:

- A binary digit holds a 1 or a 0 (at any given time)
- A binary digit is called a **bit**
- 4 bits is a nibble, 8 bits is a byte

Programming languages can hide these details, providing a more intuitive programming model

Decomposing the Quantum Computer

Classical bit:

• 0 or 1

Quantum bit (qubit):

- $|0\rangle$, $|1\rangle$, or $|0\rangle$ and $|1\rangle$ (some probability of measuring 0 or 1)
- Phase: positive (+) or negative (-)
-and more (but this is all we'll cover)

Composing Computers from (Qu)bits

Classical variable:

Group of n bits stores one of 2ⁿ possible values

Quantum variable:

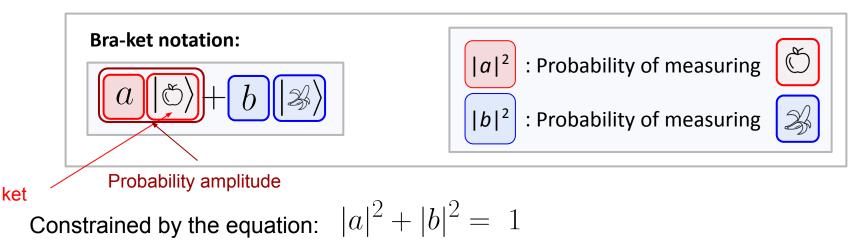
Group of n qubits stores up to 2ⁿ possible values, with a distinct probability of measuring each individual value

This means, if I set up uneven probabilities for measuring different values, I could use it to give a little spice / uncertainty to:

- The next slide (by slide number)
- The next letter or word that appears or the font used

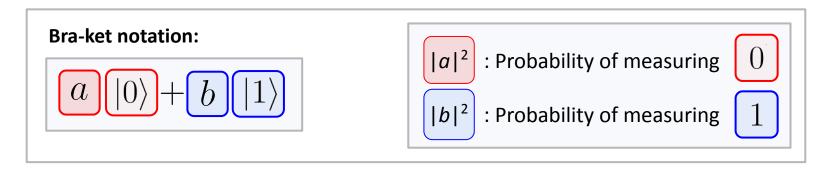
Quantum State: Bra-ket Notation

Expresses probability of measuring each of the possible states.



Quantum State: Bra-ket Notation

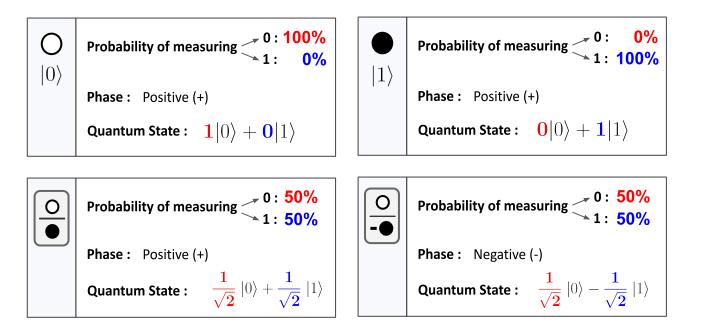
Expresses probability of measuring 0 or 1, and indicates phase (+/-).

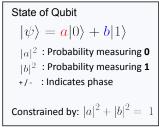


Constrained by the equation: $|a|^2 + |b|^2 = 1$

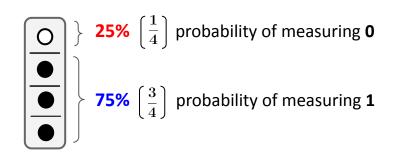
Bra-ket notation also indicates phase (+/-).

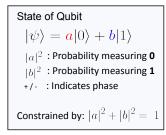
Let's relate this to the balls....

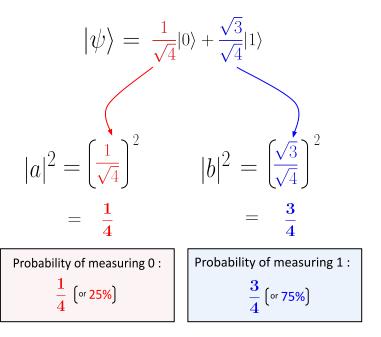




Let's relate this to the balls....







Bra-ket algebra

Like algebra, quantum notation uses conventions to improve readability.

Quantum notation simplifies in the same way as algebraic expressions.

$$z = \underbrace{15}_{15} = \underbrace{1x + 0y}_{15} \qquad |\psi\rangle = 1|0\rangle + 0|1\rangle$$
$$|\psi\rangle = |0\rangle$$
$$x = 15$$

Another convention is to factor out equivalent constants; I do not do this in class.

$$\frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle \equiv |0\rangle + |1\rangle$$

Outline

Bra-ket Notation

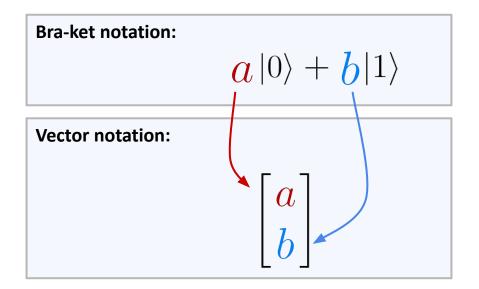
Vector Notation

Single-Qubit Calculations (matrix multiplication)

Multi-Qubit Calculations (single - double qubit notation)

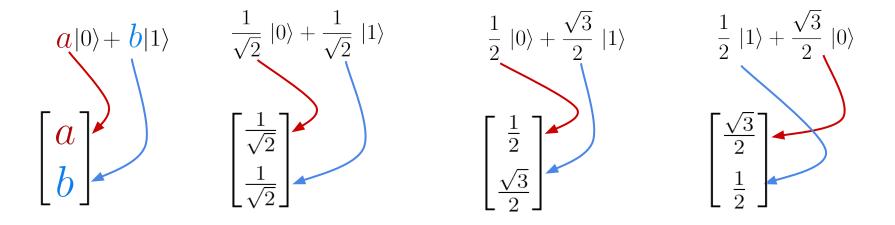
Quantum State: Vector Notation

Makes calculations of gate operations easier



Vector notation:

Makes calculations of gate operations easier



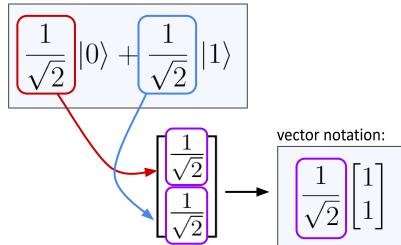
Vector notation of Quantum State:

Algebra-like simplification

Convert bra-ket notation to vector notation.

Simplify by factoring out any common constants.

bra-ket notation:



Outline

Bra-ket Notation

Vector Notation

Single-Qubit Calculations (matrix multiplication)

Multi-Qubit Calculations (single - double qubit notation)

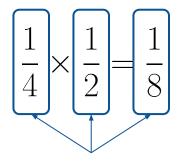
Fraction Operations

 $\frac{1}{4}$

You have a pie to share with three friends. You cut it into 4 equal pieces, each of size 1/4.

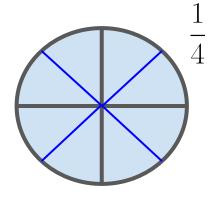
Your friend exclaims, "Just because there are four of us, it doesn't mean we need to eat the whole pie! I only want $\frac{1}{2}$ that much!!"

How much of the pie will you give your friend?



Representations of fractions

Fraction Operations



When in doubt of the mathematics, check your work using simple examples that you can figure out with drawings!

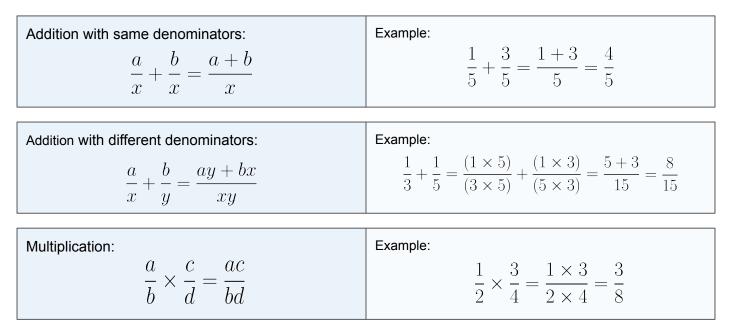
Step 1: Figure out what the real operation does

<u>ົ</u>

Step 2: Figure out the mathematics that *always* results in the same answer

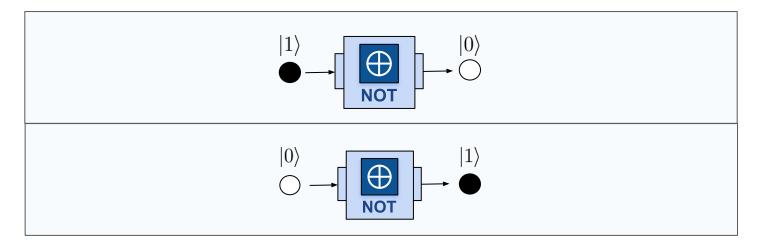
The mathematics does not always make sense on its own.

Fraction Operations: Addition & Multiplication



Have you noticed how much easier fraction multiplication is than fraction addition?

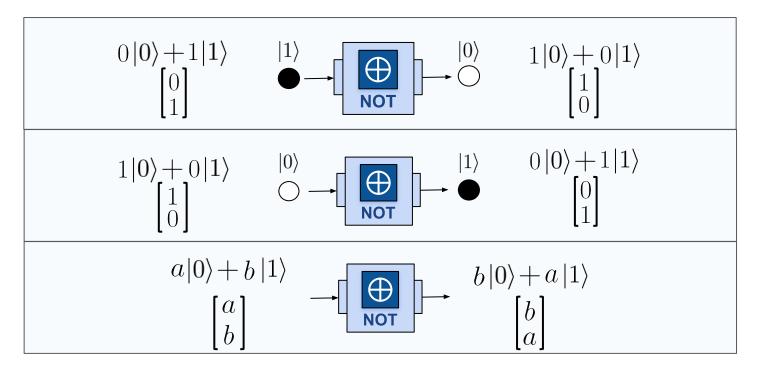
We want a mathematical calculation for....



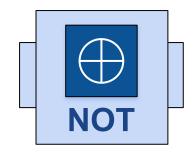
Let's revisit ways to represent qubits

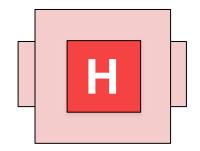


We want a mathematical calculation for ANY input



Need a similar method for all quantum gates





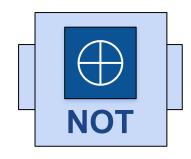
Matrix Representation

Values are laid out in a grid

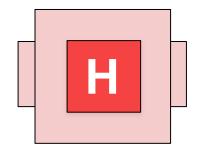
, similar to a spreadsheet

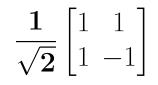
	Assignment 0	Assignment 1	Assignment 2	Assignment 3	Assignment 4
Student A	95	86	93	89	91
Student B	73	82	89	75	63
Student C	97	93	94	97	91
Student D	85	82	87	91	93

Quantum gates are represented as a matrix

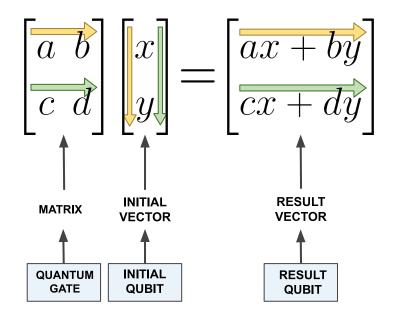


 $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

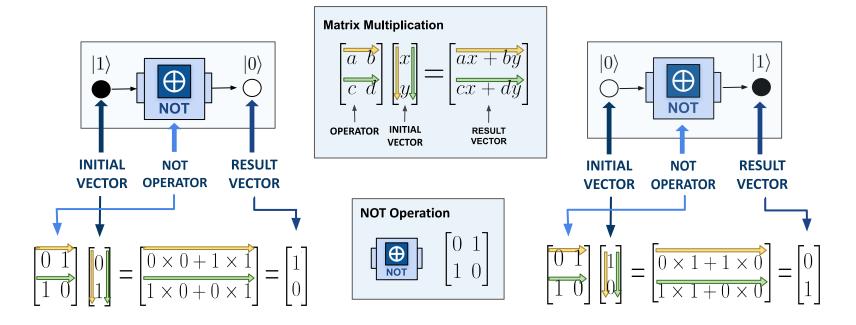




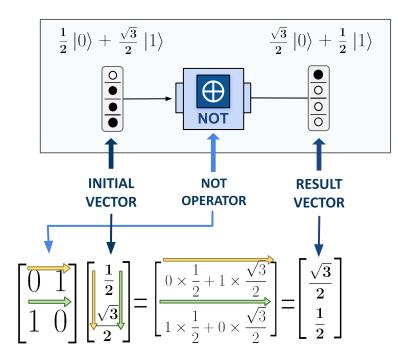
Matrix Multiplication

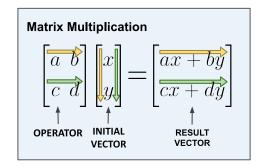


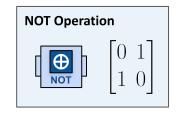
NOT Operation: Matrix Multiplication



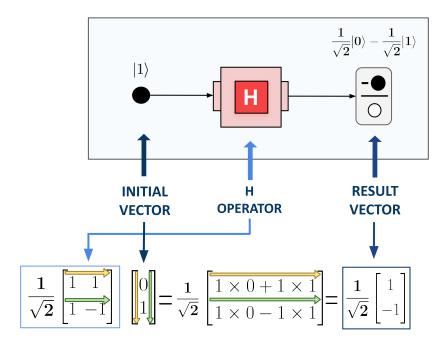
NOT Operation: Matrix Multiplication

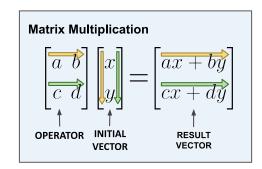


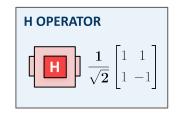




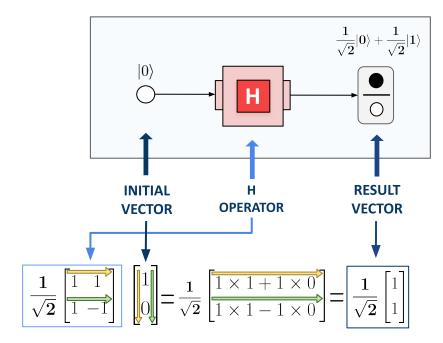
H Operation: Matrix Multiplication

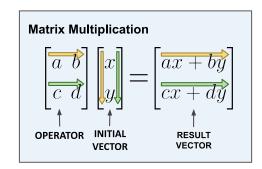


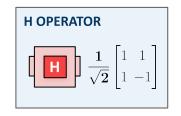




H Operation: Matrix Multiplication







Summary

- → A matrix is a 2-dimensional grid of numbers in which position is important
- → Each qubit operation is stored as its own unique matrix
- → Matrix multiplication is used to calculate the output of a quantum operation

Outline

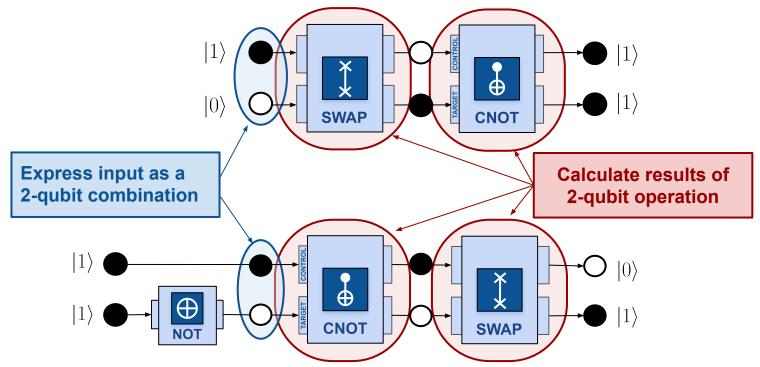
Bra-ket Notation

Vector Notation

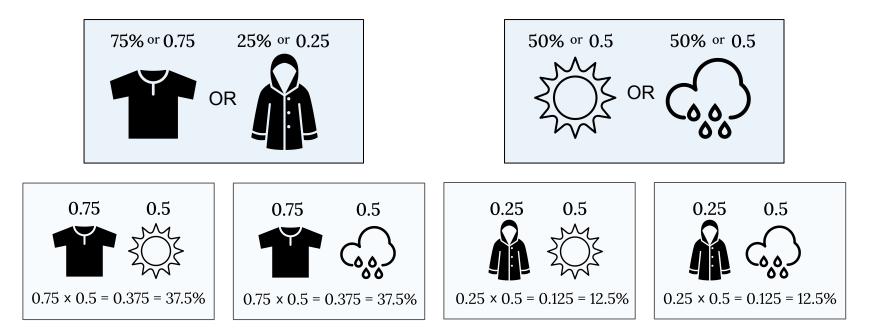
Single-Qubit Calculations (matrix multiplication)

Multi-Qubit Calculations (single - double qubit notation)

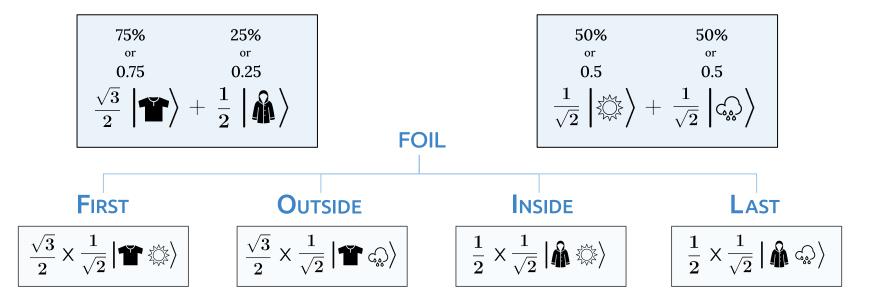
Multiple Qubit Calculations



Remember how we took the probabilities of two **independent** events and calculated the probability of different combinations of events....

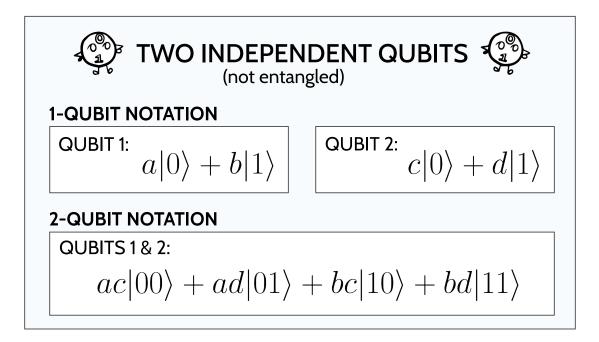


Expressing in 2-qubit bra-ket notation:

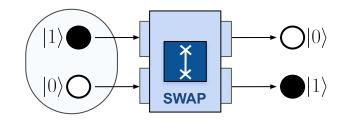


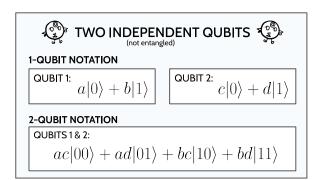
Called a TENSOR PRODUCT in Quantum Information Science (QIS).

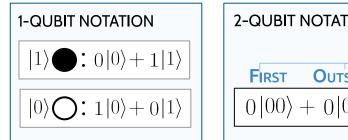
Notation for Independent Qubits

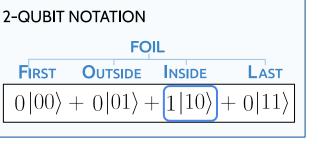


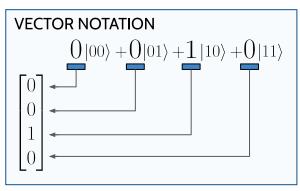
2-Qubit Notation: Example 1



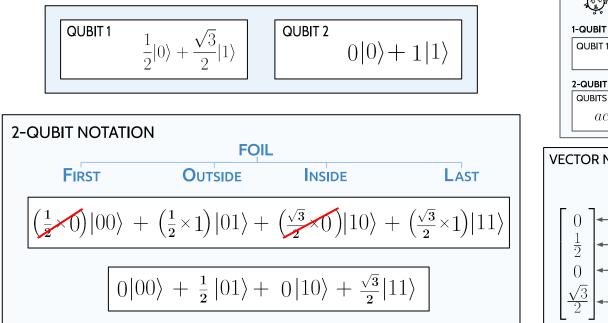


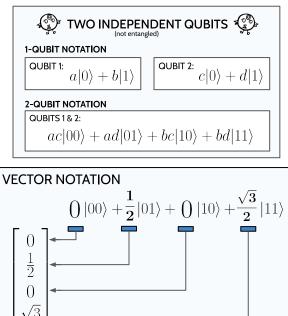




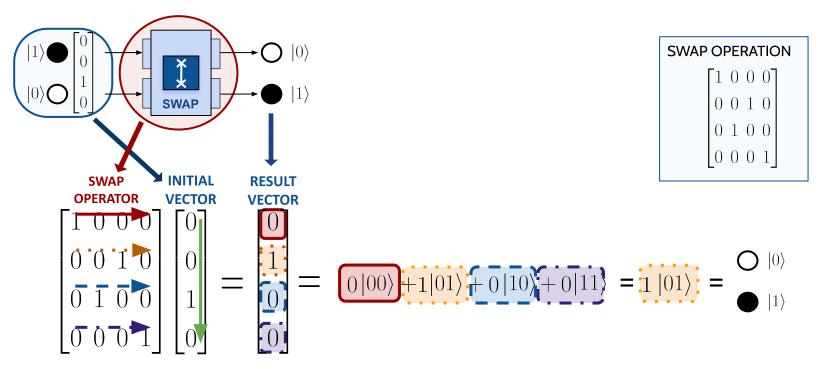


2-Qubit Notation: Example 2

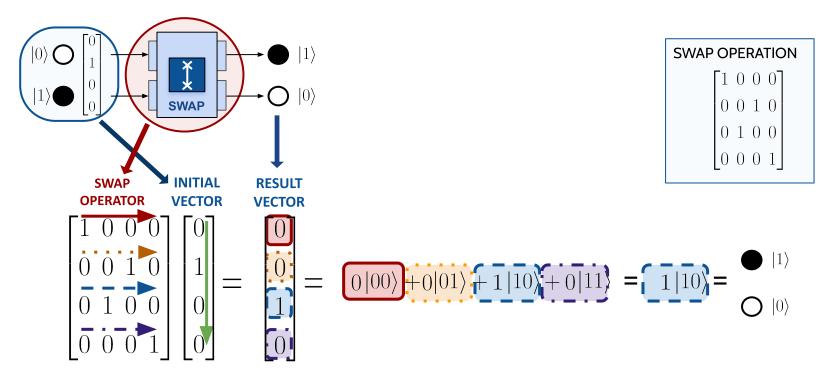




2-Qubit Calculation: Example 1



2-Qubit Calculation: Example 2 (try yourself)



Intuition behind the SWAP matrix

Starting: a |00> + b|01> + c|10> + d|11>

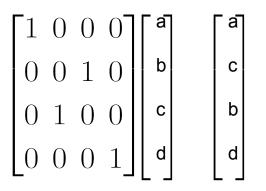
|00> and |11> have no change when swapped

|01> -> |10>, and |01> -> |10>

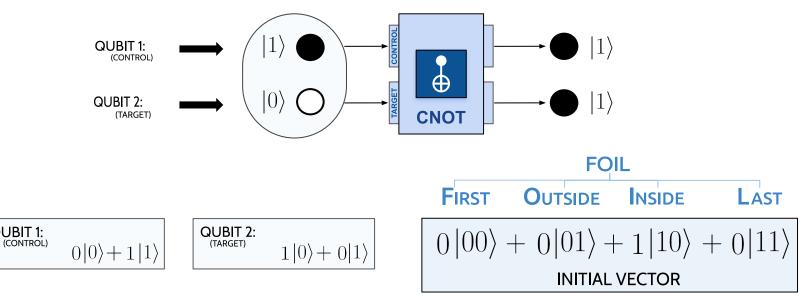
Therefore, c and b should swap probabilities

Notice the 1's on the diagonal for first and last, swap in the middle

SWAP OPERATION						
	[1	0	0	0		
	0	0	1	0		
	0	1	0	0		
	0	0	0	1		

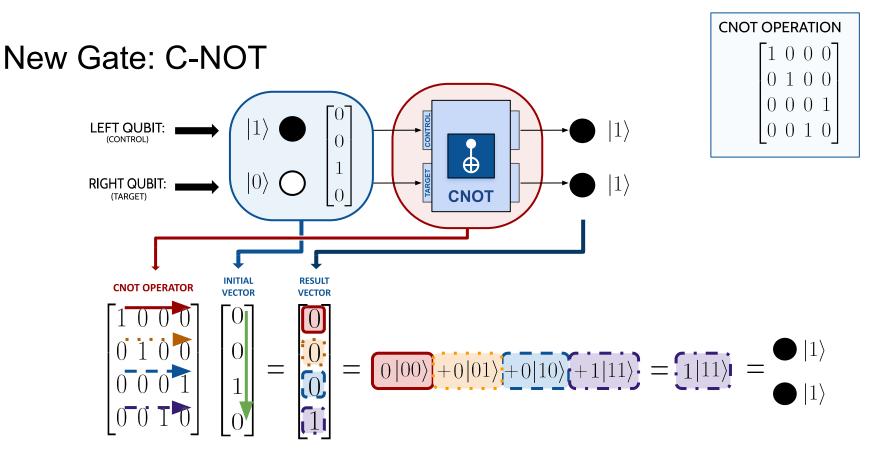


2-Bit Calculation: C-NOT Gate, Order Matters!



Control bit must always be LEFT Qubit

QUBIT 1:



Some intuition with the CNOT matrix

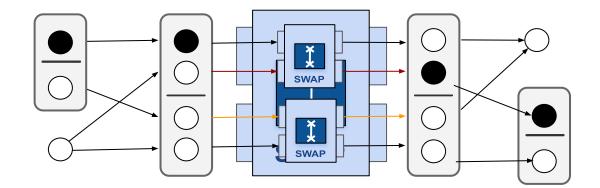
C: |0> then no change to the target |00> -> |00> |01> -> |01>

C: |1> then the target toggles |10> -> |11> |11> -> |10>

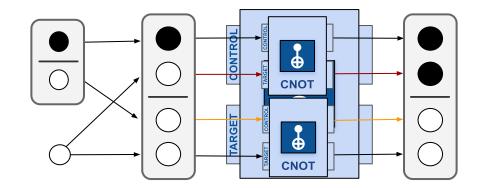
Notice where the 1's are - down the diagonal for 00 and 01, then swapping the last two.

0	0	0
1	0	0
0	0	1
0	1	0
	1 0	1 0 0 0

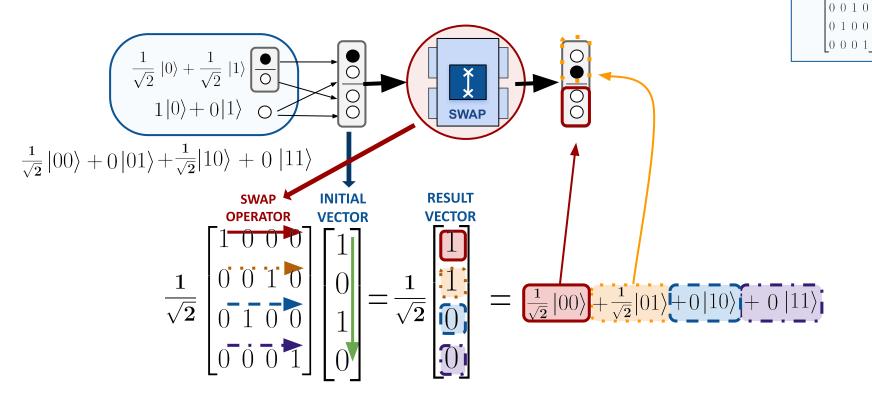
Visual Representation: 2-Qubit Operation (SWAP) & Superposition Input



Example 2: 2-Qubit Operation (C-NOT) & Superposition Input

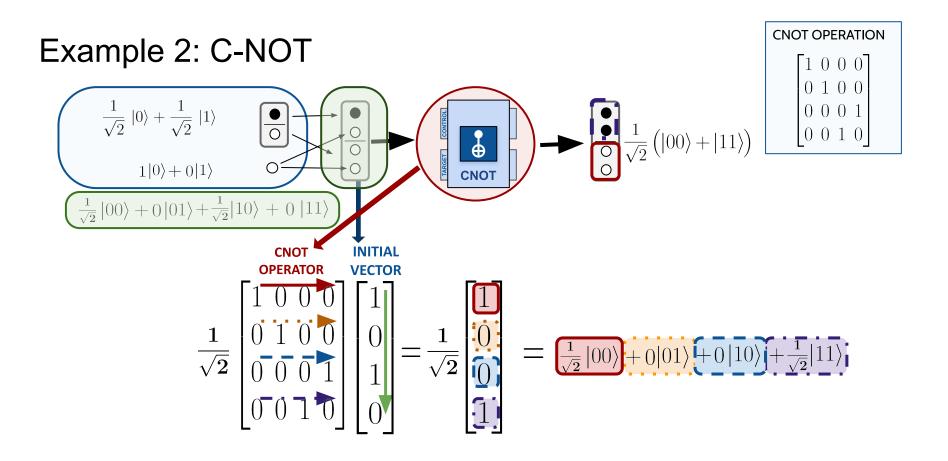


2-Qubit Operation, Superposition Input, Calculation



SWAP OPERATION

 $[1 \ 0 \ 0 \ 0]$



Summary

To perform multiple qubit operations with inputs in superposition:

- 1) Put qubit state into multi-qubit notation
- 2) Calculate the result
 - a) Visual Representation: Pass through each pair through its own gate
 - b) Matrix Notation: Matrix multiplication of gate operation matrix and qubit state vector
 - i) Note: This is the same as what you do when it's not in superposition