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Logistics

• HW #0 is due TONIGHT (3/27) by 11:59pm

• Course policy acknowledgement on Gradescope

• SSH public key upload on Canvas

• Assignment 1: two-parts, both due next Thurs (4/3):

• Part 1a: Threat modeling released Tomorrow

• Part 1b: TOCTOU attacks released by Monday

• Office hours start next week

• Next week: My office hours rescheduled to Mon (3/31) @ 2-3pm



Today’s Class

1. OS Security: 

How do we ensure that users & programs only 

access resources they’re allowed to?

2. Background for Software Security: 

How can an attacker exploit software bugs to 

bypass these security restrictions?



Outline for Lecture 2

1. OS Security: Controlling user & program access

1. Review of OS Structure 

2. Abstract approaches to access control (5.2)

3. Concrete Example: The UNIX security model

2. Software Security: Memory Safety & Control Flow Hijacking



Review of OS Structure

Operation System Kernel

Process Process Process

Application

Process Process Process

Application

…

CPU Memory Network Disk Display …



Review of OS Structure

Operation System Kernel

Process Process Process

Application

Process Process Process

Application

…

CPU Memory Network Disk Display …

Security/safety: Must protect processes from each other, protect hardware, …

Questions, though:
• What distinguishes the kernel from not-kernel?

• What is a process?



CPU

How a CPU (x86) Works (extremely high level)

…

Registers

EAX

Memory

0000…00

0000…04

0000…08

<max>

EBX EBPCPL ESP EIP

Repeat until HALT:

1. Fetch instruction inst pointed to by EIP

2. Execute logic of inst

3. Increment EIP (or update it if inst=jmp)

In some cases “interrupts” can occur, which change EIP to point 

at interrupt handler (pointed to by a special reg).

code

Next instruction



How a CPU (x86) Works (extremely high level)

CPU

…

Registers

EAX

Memory

0000…00

0000…04

0000…08

<max>

EBX EBPCPL ESP EIP

Next instruction

Memory Access:

- Reads move word of memory into register

- Writes move register to memory

Read/write memory

into registers

…

code



Memory Management Unit (MMU)

CPU

…

Registers

EAX

Memory

0000…00

0000…04

0000…08

<max>

EBX EBPCPL ESP EIP

READ addr
MMU

• MMU inspects every memory access attempt each 
program makes

App 2
memory

App 1
memory

READ addr’



Isolation in x86: It all comes down to CPL

CPU

…

Registers

EAX

Memory

0000…00

0000…04

0000…08

<max>

EBX EBPCS ESP EIP

MMU

Kernel
memory

proc1
memory

proc2
memory



Isolation in x86: It all comes down to CPL

CPU

…

Registers

EAX

Memory

0000…00

0000…04

0000…08

<max>

EBX EBPCS ESP EIP

MMU

• CPL is “current privilege level”, two designated bits in CS register

• If CPL = 0: Then processor will execute any instruction

• If CPL = 3: Then processor will only execute subset of instructions

Kernel
memory

proc1
memory

proc2
memory



Isolation in x86: It all comes down to CPL

CPU

…

Registers

EAX EBX EBPCS ESP EIP

MMU

If CPL=0, then CPU will allow…

• Direct access to (almost) any addr

• Changes to (almost) any register

• Changes internal state of MMU

• Including setting CPL=3!

If CPL=3, then CPU will not allow…

• Direct access to memory (only via 
MMU)

• Changes to several registers

• Changes to internal state of MMU

• Setting CPL=0 (!)

Big Idea: Kernel runs with 
CPL=0, and all other 

programs run with CPL=3.



Back to our diagram…

Operation System Kernel

Process Process Process

Application

Process Process Process

Application

…

CPU Memory Network Disk Display …

Questions, though:
• What distinguishes the kernel from not-kernel?

• What is a process?

The CPL!



What is a process?

CPU

…

Registers

EAX EBX EBPCS ESP EIP

MMU

Memory

0000…00

0000…04

0000…08

<max>

Kernel

process:
state=…

usage=…

…

• One Answer: A data structure the kernel manages, including:

• MMU configuration

• Register values

• To run application code: Kernel loads these values, sets CPL=3, 
and turns over CPU control “to the process” (i.e. set EIP)

• If kernel regains control, it can save these values to swap 

process out



Handling Memory for a Process

CPU

…

Registers

EAX EBX EBPCS ESP EIP

MMU

Memory

0000…00

0000…04

0000…08

<max>

• Kernel creates a “virtual address space” for each process.

• Same virtual addresses (e.g. starting near 0) can be used by 

every process! They get translated to different physical 

addresses.

• Kernel can also mark some virtual address ranges (called 
segments) as “read only” or “do not execute” (EIP not allowed 

to point there).

• Violations are SEGFAULTs: MMU will take over in this case

Kernel

process:
state=…

usage=…

…

proc1
memory



Handling Memory for a Process (cont.)

CPU

…

Registers

EAX EBX EBPCS ESP EIP

MMU

Memory

0000…00

0000…04

0000…08

<max>

Kernel
memory

proc1
memory

proc2
memory

libc

• Kernel configures MMU to translate addresses for proc1:

• Read/Write/Execute to memory specific to proc1

• Read/Execute access to libc

• Possibly other special “segments”

• No access to memory to Kernel or proc2 memory!

• They’re not even mapped; MMU will never allows access!

Not mapped!

Not mapped!



System Calls: How to let processes do privileged ops

CPU

…

Registers

EAX EBX EBPCS ESP EIP

MMU

Memory

0000…00

0000…04

0000…08

<max>

syscall 

handler

• A process (i.e. code running with CPL=3) often needs to do 
privileged actions that the CPU won’t allow directly

• e.g. access device, write output, spawn new process, …

• System calls allow this. 

• Set of instructions that carefully configure CPU registers, 

execute small-specific operations w/ kernel permissions,
switch CPL back to 3 and return control to process



Outline for Lecture 2

1. OS Security

1. Review of OS Structure 

2. Abstract approaches to access control (5.2)

3. Concrete Example: The UNIX security model

2. Software Security: Memory Safety & Control Flow Hijacking

• Overview of software exploits

• Memory layout and function calls in a process



So we have a secure kernel… What now?

1. Maybe all processes should not be “created equal”?

- e.g. Should one process be able to kill another?

2. Enable different people to use same machine?

- e.g. Need to enable confidential storage of files, sharing network, …

3. System calls allow for safe entry into kernel, but only make sense for 

low-level stuff. 

- We need a higher level to “do privileged stuff” like “change my 

password”.

All of this will be supported by an “access control” system.



Principle of Least Privilege

Subjects (system entities like users) should:

• Only have access to the data and resources needed to 

perform their authorized tasks AND

• Nothing more than this necessary access

Real World Examples:

• Faculty can only change grades for classes they teach

• Doctors should only see medical records for their patients

• Apps should only have access to their program’s data



Fundamentals of Access Control: Policies

Step 1: Give a crisp definition of a policy to be enforced. 

1. Define a sets of subjects, objects, and verbs. 

2. A policy consists of a yes/no answer for every combination of 
subject/object/verb.

Example

• Subjects: Grant, Student

• Objects: HW1, Exam
• Verbs: Create, Submit, Grade

• Policy:  {Grant -> Create, Submit, Grade -> HW1, Exam}
{Student -> Submit -> HW1, Exam}

Guiding philosophy: Utter simplicity.



The Access Control Matrix

• Entry in matrix is list of allowed verbs

• The matrix is not usually actually stored; It is an abstract idea.



Implementing Access Policies: ACLs

• ACL = “access control list”

• Logically, ACL is just a column of matrix

• Usually stored with object

• Can quickly answer question: “Who can access this object?”

Examples:

1. VIP list at event

2. This class on Canvas



Implementing Access Policies: Capabilities

• “Capability” (of a subject) is a row of matrix

• Usually stored with subject

• Can quickly answer question: “What can this subject access?”

Examples:

1. Movie ticket

2. Physical key to door lock



Enforcing Policy: Reference Monitors



Enforcing Policy: Reference Monitors

Requirements:

1. Always invoked (not circumventable).

2. Tamper-proof.

3. Verifiable; Simple enough to test thoroughly.

4. (Usually) Logs all requests.



Outline for Lecture 2

1. OS Security

1. Review of OS Structure 

2. Abstract approaches to access control (5.2)

3. Concrete Example: The UNIX security model

2. Software Security: Memory Safety & Control Flow Hijacking

• Overview of software exploits

• Memory layout and function calls in a process



What is “UNIX”? Why should we study it?

Ken Thompson and Dennis Ritchie, 1971

• Initially an OS developed in the 1970s by AT&T Bell Labs.

• A riff on “Multics”. UNIX was meant to be simpler and leaner.

• Philosophy of small programs with simple communication mechanisms

• Licensed to vendors who developed their own versions. “BSD” = “Berkeley Software 

Distribution” may be most famous of those. 

• Linux also later derived from UNIX. MacOS based on UNIX since 2000.

Why study UNIX?

1. Simple, even beautiful security design.

2. You will almost certainly use it.

3. Looking at something concrete is enlightening.



Subjects, Objects, and Verbs in UNIX (incomplete lists)

Subjects:

1. Users, identified by numbers called UIDs

2. Processes, identified by numbers called PIDs

Objects:

1. Files

2. Directories

3. Memory segments

4. Access control information (!)

5. Processes (!)

6. Users (!)

Verbs (listed by object):

1. For files and memory: Read, Write, Execute

2. For processes: Kill, debug

3. For users: Delete user, Change groups



File Permissions: Users and Groups

• A “user” is a sort of avatar that may or may not correspond to a person.

• Each user is identified by a number called UID that is fixed and unique.

• Each user may belong to 1 or more “groups”, each identified by number called GID.

inode:
mode=1010100…

uid=davidcash

gid=cs232

ctime=…

All files are owned by one user and one group.

• Changed with commands chown and chgrp.



File Permissions: UGO Model

• Three bits for each of user, group, and other/all.

• Indicate read/write/execute permission respectively.

inode:
mode=1010100…

uid=davidcash

gid=cs232

ctime=…



File Permissions: UGO Model

• Three bits for each of user, group, and other/all.

• Indicate read/write/execute permission respectively.

inode:
mode=1010100…

uid=davidcash

gid=cs232

ctime=…

To check access:
1. If user is owner, then use owner perms.

2. If user is not owner but in group, user group perms.

3. Otherwise use “other” perms.
ACL or 

Capability?



The Root User

• “root” is the name for the administrator account

• UID = 0

• Can open/modify any file, kill any process, etc

• Rarely used as a log-in; Root’s powers are typically accessed via sudo

• Why not? (Which design principle(s) does this follow?)



Process Ownership and Permissions

• Every process has an owner; That process runs with permissions of the owner.

Actually…. a process has three UIDs associated with it:

1. Real UID

2. Effective UID

3. Saved UID

• Why? To allow for fine-grained control over privileges via setuid() syscall.

• Implement least-privilege (P6) and isolated compartments (P5) in applications



Brief Recap of OS Security

• The OS Kernel ensures that multiple programs can securely run 
together at the same time

• The CPU has a dedicated CS register that tracks the 
privilege (CPL) of the currently running code

• The OS Kernel & MMU use virtual addressing to help 
isolate the memory of different processes

• To control what data (e.g., files) users can access and what 
operations (e.g., programs and code) users can run:

• The OS implements an access control system, where an 
administrator specifies policies (e.g., ACLs) about what 
actions each subject can perform on different objects



2 MINUTE BREAK



Outline for Lecture 2

1. OS Security

1. Review of OS Structure 

2. Abstract approaches to access control (5.2)

3. Concrete Example: The UNIX security model

2. Software Security: Memory Safety & Control Flow Hijacking

• Overview of software exploits

• Memory layout and function calls in a process



Software Attacks: One Common Setting

passwd

process

Insider escalating privilege

Example: Attacker has account “bob” 

on a machine and wants to access 

sensitive files, but:

• “bob” is not listed in ACLs of 

sensitive files

• “bob” also lacks sudo/root 

permissions

Goal: Exploit a bug in a privileged process 
(e.g., passwd) that lets “bob” run code with that 

privileged process’s permissions



Software Attacks: Another Common Setting

• Attacker wants to run code or access data on a server, 
but is on a remote machine

• Goal: Exploit a bug in a program running on the server that cause the 
program to run code that you send it.

• Attacker causes Gmail server to run code that returns 
other users’ email

• Attacker sends a Slack msg to Bob that causes Bob’s Slack app 
to run Attacker’s code 

httpd

process

Outsider corrupting process



Software Vulnerabilities are Very Common

According to vulnerability researcher and author Dave Aitel:

• In one hour of analysis of a binary, one can find potential vulnerabilities

• In one week of analysis of a binary, one can find at least one good vulnerability

• In one month of analysis of a binary, one can find a vulnerability that no one else 

will ever find.



Two Basic Principles of Most Attacks

• Adversaries get to inject their bytes into your machine / program

• “Data” and “Code” are interchangeable; They are fundamentally the same “thing”.

httpd

process

GET 

/index.htmlh6\گ??`:??L??S)

???Z?vm??q`?%?~???M?EK???’

?_?|Cg7L??s3?

GET /index.html HTTP/1.1

vs.



Outline for Lecture 2

1. OS Security

1. Review of OS Structure 

2. Abstract approaches to access control (5.2)

3. Concrete Example: The UNIX security model

2. Software Security: Memory Safety & Control Flow Hijacking

• Overview of software exploits

• Memory layout and function calls in a process



Program Execution: CPU & Memory

• CPU: executes the instructions (code) of processes

• Memory: stores code & runtime state of each process

CPU

…

Registers

EAX EBX EBPCS ESP EIP

MMU

Memory

0000…00

0000…04

0000…08

ffff…ff

Kernel
memory

proc1
memory

proc2
memory

libc



Program Execution: CPU & Memory

• CPU: executes the instructions (code) of processes

• Memory: stores code & runtime state of each process

• Virtual Memory abstraction: the illusion that each process 
owns the entire address space

CPU

…

Registers

EAX EBX EBPCS ESP EIP

MMU

Memory

0000…00

0000…04

0000…08

ffff…ff

Kernel
memory

proc1
memory

proc2
memory

libc



Memory Layout of a Process (in Linux)
Virtual Memory

fff…f

000…0

.text

.data

.bss

stack

heap

.text: Machine executable code

.data: Global initialized static variables

.bss: Global uninitialized variables (“block starting symbol”)

heap: Dynamically allocated memory (via brk/sbrk/mmap syscall)

stack: Local variables and functional call info

env: Environment variables (PATH etc)

env



x86 Registers and Virtual Memory Layout
Virtual Memory

fff…f

000…0

.text

.data

.bss

stack

heap

env

CPU

…

Registers

eax ebx ebpcpl esp eip

eip: instruction pointer

esp: stack pointer (top of stack)

ebp: base pointer to current “stack frame”

• Values / Content of these 3 registers = 

virtual memory addresses



Stack Frames

• When a function is called, the CPU allocates space on the stack to:

• Track this function’s local state: data like arg’s and local var’s

• Store control flow info: who called this function & what code to 
execute after the function

• This space on the stack is known as the function’s stack frame

• The EBP and ESP registers track where the current function’s stack 
frame lives in memory (starting & ending memory addr’s)

• A function’s stack frame is created & destroyed in part by both:

• The calling function: Caller

• The function that was called: Callee 



The Stack and Calling a Function in C

Virtual Memory

fff…f

000…0

stack

env

main frame

main arg

saved eip

saved ebp

main local

}

main

foo

eip

esp
ebp

int foo(int a, int b) {
  int d = 1;
  return a+b+d;
}

int main(…) {
…
int x = foo(5, 6);
…

}



The Stack and Calling a Function in C

Virtual Memory

fff…f

000…0

stack

env

What happens to memory when you call foo(a,b)?

- A “stack frame” is added 

- Instruction pointer eip moves to code for foo

main frame

main arg

saved eip

saved ebp

main local

}

main

foo

eip

esp
ebp

int foo(int a, int b) {
  int d = 1;
  return a+b+d;
}

int main(…) {
…
int x = foo(5, 6);
…

}



The Stack and Calling a Function in C

Virtual Memory

fff…f

000…0

stack

env

What happens to memory when you call foo(a,b)?

- Caller (main): (i) push callee args, 

main frame

main arg

saved eip

saved ebp

main local

}

main

foo

eip

esp

ebp

foo’s frame
arg a

arg b }
int foo(int a, int b) {
  int d = 1;
  return a+b+d;
}

int main(…) {
…
int x = foo(5, 6);
…

}



The Stack and Calling a Function in C

Virtual Memory

fff…f

000…0

stack

env

What happens to memory when you call foo(a,b)?

- Caller (main): (i) push callee args, 

(ii) save EIP register value on stack

main frame

main arg

saved eip

saved ebp

main local

}

main

foo

eip

esp

ebp

foo’s frame
arg a

arg b

saved eip}
int foo(int a, int b) {
  int d = 1;
  return a+b+d;
}

int main(…) {
…
int x = foo(5, 6);
…

}



The Stack and Calling a Function in C

Virtual Memory

fff…f

000…0

stack

env

What happens to memory when you call foo(a,b)?

- Caller (main): (i) push callee args, 

(ii) save EIP register value on stack, 

(iii) move EIP register into foo’s code

main frame

main arg

saved eip

saved ebp

main local

}

main

foo

eip

ebp

foo’s frame
arg a

arg b

saved eip}
esp

int foo(int a, int b) {
  int d = 1;
  return a+b+d;
}

int main(…) {
…
int x = foo(5, 6);
…

}



The Stack and Calling a Function in C

Virtual Memory

fff…f

000…0

stack

env

What happens to memory when you call foo(a,b)?

- Callee (foo): (i) save caller’s EBP value on stack

main frame

main arg

saved eip

saved ebp

main local

}

main

foo

eip

ebp

foo’s frame
arg a

arg b

saved eip}
esp

saved ebp

int foo(int a, int b) {
  int d = 1;
  return a+b+d;
}

int main(…) {
…
int x = foo(5, 6);
…

}



The Stack and Calling a Function in C

Virtual Memory

fff…f

000…0

stack

env

What happens to memory when you call foo(a,b)?

- Callee (foo): (i) save caller’s EBP value on stack,

(ii) move EBP register to point to its stack frame,

main frame

main arg

saved eip

saved ebp

main local

}

main

foo

eip

ebp
foo’s frame

arg a

arg b

saved eip}
esp

saved ebp

int foo(int a, int b) {
  int d = 1;
  return a+b+d;
}

int main(…) {
…
int x = foo(5, 6);
…

}



The Stack and Calling a Function in C

Virtual Memory

fff…f

000…0

stack

env

What happens to memory when you call foo(a,b)?

- Callee (foo): (i) save caller’s EBP value on stack,

(ii) move EBP register to point to its stack frame, 

(iii) allocate local var’s

main frame

main arg

saved eip

saved ebp

main local

}

main

foo

eip

ebp
foo’s frame

arg a

arg b

saved eip}
esp

saved ebp

int d
int foo(int a, int b) {
  int d = 1;
  return a+b+d;
}

int main(…) {
…
int x = foo(5, 6);
…

}



Virtual Memory

fff…f

000…0

stack

env

What happens after code of foo(a,b) is finished?

- Pop the function’s stack frame (move esp to ebp)

- Pop (moves) saved ebp to ebp register

- Pop (moves) saved eip to eip register

- Caller (main) pops foo’s arg from the stack

main frame

arg a

arg b

saved eip

saved ebp

int d

prev arg

saved eip

saved ebp

main local

foo’s frame
}
}

main

foo

esp

eip

ebp

Returning from a function

int foo(int a, int b) {
  int d = 1;
  return a+b+d;
}

int main(…) {
…
int x = foo(5, 6);
…

}



Virtual Memory

fff…f

000…0

stack

env

What happens after code of foo(a,b) is finished?

- Pop the function’s stack frame (move esp to ebp)

- Pop (moves) saved ebp to ebp register

- Pop (moves) saved eip to eip register

- Caller (main) pops foo’s arg from the stack

prev frame

arg a

arg b

saved eip

saved ebp

int d

prev arg

saved eip

saved ebp

prev local

foo’s frame
}
}

main

foo

esp

Returning from a function

Key Point:

The CPU determines what 
code & data to execute 
next, based entirely on 

values stored on the 
stack

eip

ebp
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